政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/84114
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113392/144379 (79%)
造访人次 : 51199887      在线人数 : 933
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/84114


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/84114


    题名: Inferring Potential Users in Mobile Social Networks
    作者: Hsu, T.-H.;Chen, C.-C.;Chiang, M.-F.;Hsu, K.-W.;Peng, W.-C.
    徐國偉
    贡献者: 資科系
    日期: 2014-10
    上传时间: 2016-04-11 16:04:24 (UTC+8)
    摘要: In mobile social networks, users can communicate with each other over different telecom operators. Thus, for telecom operators, how to attract new customers is a significant issue. The work of churn prediction is to determine whether a customer would leave soon. Differing from churn prediction, our work is to find those users who are likely to join target services from the competitors in the near future, where these users are called potential users. To infer potential users, we propose a framework including feature extraction, feature selection, and classifier learning to solve the problem. First, we construct a heterogeneous information network from the call detail records of users. Then, we extract the explicit features from potential users` interaction behavior in the heterogeneous information network. Moreover, because users are influenced by their community, we extract community-based implicit features of potential users. After feature extraction, we explore the Information Gain to select the effective features. We use the effective explicit and implicit features to learn potential user classifiers, and use the classifiers to determine the potential users. Finally, we conduct experiments on real datasets. The results of our experiments show that the features extracted by our proposed method can improve the accuracy of inferring potential users.
    關聯: International Conference on Data Science and Advanced Analytics (DSAA), Shanghai, China, October 30-November 1, 2014, 347-353
    数据类型: conference
    DOI 連結: http://dx.doi.org/10.1109/DSAA.2014.7058095
    DOI: 10.1109/DSAA.2014.7058095
    显示于类别:[資訊科學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2902检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈