政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/83542
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 50966220      線上人數 : 990
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/83542
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/83542


    題名: 基於筆畫與結構分析之中文書法美感評估
    Aesthetic Evaluation of Chinese Calligraphy Based on Stroke and Structural Analysis
    作者: 林育如
    Lin, Yuh Ru
    貢獻者: 廖文宏
    Liao, Wen Hung
    林育如
    Lin, Yuh Ru
    關鍵詞: 美感評估
    書法
    楷書
    筆畫分析
    結構分析
    機器學習
    Aesthetic evaluation
    Calligraphy
    Kai style
    Stroke analysis
    Structural analysis
    Machine learning
    日期: 2016
    上傳時間: 2016-04-01 10:41:45 (UTC+8)
    摘要: 中文書法經過了長久歷史的演變,已不單用來記錄事物,儼然成為了一種藝術。從古至今,有眾多書法大家和美學家撰寫書法專書,然而中文書法理論大多講述較抽象的技法,且在相關文獻鮮少之情況下難以具體將美感量化。本論文的目的為以電腦視覺角度解析中文書法筆畫與結構,找出影響書法美觀程度的視覺元素,並加以量化分析,透過機器學習機制,使電腦具有基本的書法鑑賞能力。有別於前人研究,我們提出6種描述整體楷書書法作品美感的特徵,包含排版工整度、字距掌握度、文字偏移程度、文字書寫大小穩定度、筆畫風格一致程度以及筆畫平滑程度。本研究蒐集書法比賽和素人作品共100張,每張皆經由一般母語為中文之受測者的評估,並且將得到的評分作為樣本的標籤,透過SVM辨識3個級別和5個級別的樣本,兩者皆有好的辨識效果。再者,我們將辨識結果轉換成美感分數,亦能真實呼應人工評分。透過我們的研究成果,期望能提供書法初學者在書法創作上的基礎參考標準。
    After a long history of evolution, Chinese calligraphy has transformed from a tool for writing to a unique form of art. Many publications regarding calligraphy writing techniques and appreciation have emerged along the way. Although the theory of Chinese calligraphy aesthetics is profound, it is difficult to define measures to quantify ‘beauty’ or ‘taste’. The objective of this research is to explore and extract relevant visual features for aesthetic evaluation of Chinese calligraphy using computer vision and machine learning techniques. Specifically, we propose six visual features to describe the quality of calligraphy work in Kai style, including layout, word separation, character offset, size regularity, style consistency and stroke uniformity. We then employ support vector machine (SVM) classifier to categorize the work into three or five levels of expertise. In both cases, good recognition results have been achieved. Furthermore, an aesthetic score can be obtained by converting the classification result with weighting factors. We hope that the evaluation result can assist beginners in identifying flaws in their writings and provide constructive suggestions to improve their skills in Chinese calligraphy.
    參考文獻: [1] 李賢輝,「視覺素養學習網」,http://vr.theatre.ntu.edu.tw/fineart/。
    [2] 房弘毅,「黃自元間架結構摘要九十二法」,中國書店,2005。
    [3] 蔡元培,「蔡元培文集(卷二).教育上」,錦繡出版社,台北市,民國84年。
    [4] 梁啟超,「飲冰室專集(五).作文教學法.書法指導」,中華書局,台北市,未標出版年。
    [5] 簡月娟,「書法美學研究方法論的省思」,興大中文學報第18期,民國95年1月,頁213-232。
    [6] Pak-keung Lai and Dit-yan Yeung, “Chinese glyph generation using character composition and beauty evaluation metrics”, Proceedings of the 1995 International Conference on Computer Processing of Oriental Languages, pp.92-99, 1995.
    [7] 張炘中,「漢字識別技術」,清華大學出版社,1992。
    [8] 房弘毅,「歐陽詢三十六法八訣」,中國書店,2005。
    [9] Dan Cires¸an and Jurgen Schmidhuber, “Multi-column deep neural networks for offline Handwritten Chinese character classification”, Technical Report, Aug 2013.
    [10] Yanwei Wang, Xin Li, Changsong Liu, Xiaoqing Ding and Youxin Chen, “An MQDF-CNN Hybrid Model for Offline Handwritten Chinese Character Recognition”, 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp.246–249, 2014.
    [11] S.H. Xu, FCM Lau and Y. Pan, “A preliminary attempt at evaluating the beauty of Chinese calligraphy”, A Computational Approach to Digital Chinese Painting and Calligraphy, pp.253-284, 2009.
    [12] Rongju Sun, Zhouhui Lian, Yingmin Tang and Jianguo Xiao, “Aesthetic Visual Quality Evaluation of Chinese Handwritings”, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015).
    [13] Jinjun Wang, Jianchao Yang, Kai Yu,Fengjun Lv, Thomas Huang, and Yihong Gong, “Locality-constrained linear coding for image classification”, Computer Vision and Pattern Recognition (CVPR), pp.3360–3367, 2010.
    [14] A Wilsona and A Chatterjee, “The assessment of preference for balance: Introducing a new test”, Empirical Studies of the Arts, vol. 23, pp.165-180, 2005.
    [15] Gershoni S and Hochstein S, “Measuring pictorial balance perception at first glance using Japanese calligraphy”, i-Perception, vol. 2 Issue 6, pp.508-527, 2011.
    [16] Boris Epshtein, Eyal Ofek, and Yonatan Wexler, “Detecting text in natural scenes with stroke width transform”, CVPR, pp.2963-2970, 2010.
    [17] 陳仕侗,「筆歌墨舞-書法欣賞」,
    http://tmw3.tmps.tp.edu.tw/100501/%E7%AD%86%E6%AD%8C%E5%A2%A8%E8%88%9E/%E6%9B%B8%E6%B3%95%E6%AC%A3%E8%B3%9E.htm
    [18]「數位化的藝術廊道」,http://ndap.wzu.edu.tw/index.html。
    描述: 碩士
    國立政治大學
    資訊科學學系
    102753018
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0102753018
    資料類型: thesis
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    301801.pdf4393KbAdobe PDF2586檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋