English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50957896      Online Users : 948
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/83373
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/83373


    Title: 有外力干擾的二階非線性微分方程
    Nonlinear second order differential equation with force u``(t)=uP(t)(c1+c2u`(t)q)
    Authors: 黃金龍
    HUANG, JIN-LON
    Contributors: 李明融
    黃金龍
    HUANG JIN-LON
    Keywords: 爆破率
    爆破常數
    爆破時間
    Date: 2002
    Issue Date: 2016-03-31 16:39:18 (UTC+8)
    Abstract: 在這一篇論文中,我們討論的是常微分方程u" =u<sup>P</sup>(C<sub>1</sub>+C2(u`)<sup>q</sup>")我們發現一些現象,爆破率、爆破常數、爆破時間。而且我們還發現爆破時問與係數之間的關係,我們將在之後討論。
    In this paper we work with the ordinary differential equation u" = u<sup>P</sup>(C<sub>1</sub>+C2(u`)<sup>q</sup>"). We have found some phenomena, blow-up, blow-up rate, blow-up constant, blow-up time are obtained in this work. Further, we have also found the relationship between blow-up time and blow-up coefficients, we shall detail illustrate it later.
    Abstract-----i
    中文摘要-----ii
    1 Introduction-----1
    1.1 The Calligraphy Equation (Li,1999)-----1
    1.2 The Existence of Solutions-----2

    2 Blow-up Phenomena for 2 > q ≧1-----6
    2.1 Blow-up Rate and Blow-up Constant of u(t)-----10
    2.2 Blow-up Rate and Blow-up Constant of u`t)-----11
    2.3 Blow-up Rate and Blow-up Constant of u""(t)-----12

    3 Blow-up Phenomena for q = 2-----13
    3.1 Blow-up Rate and Blow-up Constant of u(t)-----13
    3.2 Blow-up Rate and Blow-up Constant of u`(t)-----14
    3.3 Blow-up Rate and Blow-up Constant of u""(t)-----15

    4 Blow-up Phenomena for q > 2-----16
    4.1 Blow-up Rate and Blow-up Constant of u`(t)-----17
    4.2 Blow-up Rate and Blow-up Constant of u""{t)-----18

    5 Conclusions-----19
    5.1 Tables-----19
    5.1.1 Blows up Phenomena for u under uo,u1,c2 > 0-----19
    5.1.2 Blows up Phenomena for u` under uo,u1,c2 > 0-----19
    5.1.3 Blows up Phenomena for u"" under uo,u1,c1,c2 > 0-----19
    5.2 Properties of Blow-up Constant and Coefficients-----19
    5.2.1 The Case of 1 5.2.2 The Case of q= 2-----22
    5.3 Properties of Blow-up Time and Coefficients-----23
    5.3.1 The Case of 1 5.3.2 The Case of q=2-----25

    References-----26
    Reference: D.H. Griffel, Applied Functional Analysis, 3rd, England, Ellis Horwood, 1985, p.116.
    I-Chen Chen, Some Studies in Differential Equation, Preprint, National Chengchi University, 1999.
    Jiun-Hon Lin, The Regularity of Solutions for Nonlinear Differential Equation u``-u^p=0, Preprint, National Chengchi University, 1999.
    Meng-Rong Li, On the Differential Equation u``-u^p=0, Preprint, National Chengchi University, 1999.
    Description: 碩士
    國立政治大學
    應用數學系
    88751010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002000060
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2227View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback