Reference: | 1. Anderson, J.R., Cognitive Psychology and Its Implications, W.H.Freeman, New York, 1990.
2. Anderson, J.R., Learning and Memory: An Integrated Approach, John Wiley and Sons, New York, 1995.
3. Boden, M.A., Artificial Intelligence in Psychology: Interdisciplinary Essays, The MIT Press, Cambridge, 1989.
4. Davey, G., Animal Learning and Conditioning, The Macmillan Press, London, 1981.
5. Edgell, S.E., ”Configural Information Processing in Two-Cue Probability Learning,” Organizational Behavior and Human Performance, Vol.22, 1978, pp.404-416.
6. Edgell, S.E. and Roe, R.M., “Dimensional Information Facilitates the Utilization of Configural Information: A Test of the Cestellan-Edgell and the Gluck-Bower Models,” Journal of Experimental Psychology: Learning, Memory, and Cognition, Vol.21, 1995, pp.1495-1508.
7. Gagne, R.M., “Memory Structures and Learning Outcomes,” Review of Educational Research, Vol.48, 1978, pp.178-222.
8. Gardner, H., The Mind’s New Science: A History of the Cognitive Revolution, Basic Books, New York, 1985.
9. Gluck, M.A. and Bower, G.H., “From Conditioning to Category Learning: An Adaptive Network Model,” Journal of Experimental Psychology: General, Vol.117, 1988, pp.227-247.
10. Grossberg, S., Neural Networks and Natural Intelligence, The MIT Press, Cambridge, 1988.
11. Kruschke J.K. and Johansen M.K., “A Model of Probabilistic Category Learning,” Journal of Experimental Psychology: Learning, Memory and Cognitive, Vol.25, 1999, pp.1083-1119.
12. Hertz, J., Krogh, A. and Palmer R.G., Introduction to the Theory of Neural Computation, Addison Wesley, New York, 1991.
13. Medin, D.L. and Edelson, S.M., “Problem Structure and the Use of Base-Rate Information from Experience,” Journal of Experimental Psychology: General, Vol.117, pp.68-85.
14. Medin, D.L. and Schaffer, M.M., “Context Theory of Classification Learning,” Psychological Review, Vol.85, 1978, pp.207-238.
15. Morris, R.G.M., Parallel Distributed Processing: Implications for Psychology and Neurobiology, Oxford, New York, 1989.
16. Nosofsky, R.M., “Similarity, Frequency, and Category Representations,”Journal of Experimental Psychology: Learning, Memory, and Cognition, Vol.14, 1988, pp.54-65.
17. Regehr, G. and Brooks, L., “Category Organization in Free Classification: The Organizing Effect of an Array of Stimuli,” Journal of Experimental Psychology: Learning, Memory, and Cognition, Vol.21, 1995, pp.347-363.
18. Rescorla, R.A. and Wagner, A.R., "A theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Non-reinforcement," In Black, A.H. and Prokasy, W.F. (Eds.), Classical Conditioning Ⅱ: Current Research and Theory, Appleton Century Crofts, New York, 1972.
19. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., ”Learning Internal Representations by Error Propagation,” In Rumelhart, D.E. and McClelland, J. L. (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.1, The MIT Press, Cambridge, 1986, pp.318-362.
20. Rumelhart, D.E. and McClelland, J.L. (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.1, The MIT Press, Cambridge, 1986.
21. Schalkoff, R.J., Artificial Neural Networks, McGraw-Hill, New York, 1997.
22. Smith, J.D., Minda, J.P. and Murry, M.J., Jr., “Straight Talk about Linear Separability,” Journal of Experimental Psychology: Learning, Memory, and Cognition, Vol.23, 1997, pp.659-680.
23. Sutton, R.S. and Barto, A.G., “Toward a Modern Theory of Adaptive Networks: Expectation and Prediction,” Psychological Review, Vol.88, 1981, pp. 135-170.
24. Tsaih, R., “Sensitivity Analysis, Neural Networks, and the Finance,” International Joint Conference on Neural Networks, 1999. |