English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50812518      Online Users : 852
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/83253
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/83253


    Title: 有序分類下三維列聯表之關係模型探討
    On Association Models for Three-Way Contingency Tables with Ordinal Categories
    Authors: 劉佳鑫
    Benny Liu, Chia-Hsin
    Contributors: 江振東
    Chiang, Jeng-Tung
    劉佳鑫
    Benny Liu, Chia-Hsin
    Keywords: 有序分類
    三維列聯表
    對數相加性模型
    對數相乘性模型
    對數線性模型
    非對數線性模型
    條件關係
    部分關係
    ordinal category
    three-way contingency table
    log-additive model
    log-multiplicative model
    log-linear model
    non-loglinear model
    conditional association
    partial association
    Date: 2000
    Issue Date: 2016-03-31 14:45:01 (UTC+8)
    Abstract: 本文主要是在探討三個變數所構成之三維列聯表中,兩兩有序類別變數間的關係,而衡量的標準,我們則採用「兩兩變數所構成之二維列聯表中,相鄰兩列與相鄰兩行所求計出的相對成敗比(local odds ratios)」。在三維列聯表的資料架構下,我們可分別就固定某一變數水準之下兩個有序變數彼此間的「條件關係」,以及三個有序類別變數彼此兩兩間的「部分關係」,建構其各自的三維關係模型,並進行參數估計。此外,我們也提供必要的電腦程式,並舉出實例,加以說明。
    In analyzing a three-way contingency table with three ordinal variables, we can use association models suggested in Goodman (1979) to study the association between each pair of ordinal variables. The association was measured in terms of the local odds ratios formed from adjacent rows and adjacent columns of the cross-classification. This article investigates in great details the conditional association models and the partial association models for three-way cross-classifications. In addition, issues on estimating the para-meters in these two kinds of association models are discussed, and computer programs are provided. Some of the applications are illustrated.
    Reference: 01. Agresti, A. (1984). The Analysis of Ordinal Categorical Data. New York: John Wiley.
    02. Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley.
    03. Agresti, A. (1996). An Introduction to Categorical Data Analysis. New York: John Wiley.
    04. Becker, M. P. (1990). Maximum likelihood estimation of the RC(M) association model. Applied Statistics, 39, 152-166.
    05. Becker, M. P. and C. C. Clogg (1989). Analysis of sets of two-way contingency tables using association models. Journal of the American Statistical Association, 84, 142-151.
    06. Clogg, C. C. (1982). Some models for the analysis of association in multi-way cross-classifications having ordered categories. Journal of the American Statistical Association, 77, 803-815.
    07. Clogg, C. C. and E. S. Shihadeh (1994). Statistical Models for Ordinal Variables. Thousand Oaks, California: Sage.
    08. Cody, R. P., and J. K. Smith (1997). Applied Statistics and the SAS Programming Language. Upper Saddle River, New Jersey: Prentice Hall.
    09. Davis, J. A. (1977). Codebook for the 1977 General Social Survey. Chicago: National Opinion Research Center.
    10. Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W. Stewart (1979). LINKPACK User’s Guide. Philadelphia: Society for Industrial and Applied Mathematics.
    11. Eliason, S. R. (1993). Maximum Likelihood Estimation: Logic and Practice. Newbury Park, California: Sage.
    12. Eliason, S. R. (1995). Two-way cross-classifications. Sociological Methods & Research, Vol. 24, No. 1, 30-67.
    13. Forthofer, R. N., and R. G. Lehnen (1981). Public Program Analysis, A New Catego-rical Data Approach. Belmont, California: Lifetime Learning Publications.
    14. Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74, 537-552.
    15. Goodman, L. A. (1984). The Analysis of Cross-Classified Data Having Ordered Cate-gories. Cambridge, Massachusetts: Harvard University Press.
    16. Nyhoff, L. R., and S. C. Leestma (1997). Fortran 90 for Engineers and Scientists. Upper Saddle River, New Jersey: Prentice Hall.
    17. 劉佳鑫、周國靖、鍾曉君合著,「校內公車滿意度調查」,國立政治大學統計學報第三十一期,台北:國立政治大學統計學系,頁1-25,民國八十九年。
    Description: 碩士
    國立政治大學
    統計學系
    87354015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001947
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback