Reference: | [1] P. Armitage. Numerical studies in the sequential estimation of a binomial parameter. Biometrika, 45:1-15, 1958. [2] I.V. Basawa and B. L. S. P. Rao, Stochastic Process. Academic Press, London, 1980. [3] M. N. Chang. Confidence intervals for a normal mean following a group sequential test. Biometrics, 45:247-254, 1989. [4] D. S. Coad and M. Woodroofe. Corrected confidence intervals after sequential testing with applications to survival analysis. Biometrika, 83:763-777, 1996. [5] K. M. Facey and J. Whitehead. An improved approximation for calculation of confidence intervals after a sequential clinical trial. Statist. Med., 9:1277-1285, 1990. [6] G. L. Rosner and A. A. Tsiatis. Exact confidence limits following group sequential test. Biometrika, 75:723-729, 1988. [7] D. Siegmund. Estimation following sequential testing. Biometrika, 65:341-349, 1978. [8] D. Siemund. Sequential Analysis. Springer, New York, 1985. [9] S. Todd and J. Whitehead. Confidence interval calculation for a sequential clinical trial of binary responses. Biometrika, 84:737-743, 1997. [10] S. Todd, J. Whitehead, and K. M. Facey. Point and interval estimation following a sequential clinical trial. Biometrika, 83:453-461, 1996. [11] R. C. Weng and M. Woodroofe. Integrable expansions for posterior distributions for multiparameter exponential families with applications to sequential confidence levels. Statistica Sinica, 10:693-713, 2000. [12] J. Whitehead. The Design and Analysis of Sequential Clinical Trials. Ellis Horwood, Chichester, 1983. [13] M. Woodroofe. Very weak expansions for sequentially designed experiments: linear models. Ann. Statist., 17:1087-1102, 1989. [14] M. Woodroofe. Estimation after sequential testing : A simple approach for a truncated sequential probability ratio test. Biometrika, 79:347-353, 1992. [15] M. Woodroofe. Integrable expansions for posterior distributions for one-parameter exponential families. Statistica Sinica, 2:91-111, 1992. |