政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/83249
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113303/144284 (79%)
造訪人次 : 50810280      線上人數 : 676
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/83249
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/83249


    題名: 常用統計套裝軟體的U(0,1)亂數產生器之探討
    作者: 張浩如
    Chang, Hao-Ju
    貢獻者: 余清祥
    張浩如
    Chang, Hao-Ju
    關鍵詞: 亂數產生器
    統計軟體
    樣本平均蒙地卡羅法
    Random number generator
    Statistical software
    sample-mean Monte Carlo method
    日期: 2000
    上傳時間: 2016-03-31 14:44:52 (UTC+8)
    摘要: 由於電腦的發展與普及,在各個領域的應用上,有越來越多的人利用電腦模擬的結果作為參考的依據。而在電腦模擬的過程中,亂數的產生是相當重要的一環。目前大多數的使用者都是直接利用套裝軟體內設的亂數產生器(random number generator)來產生亂數,但是在一般的文獻中對於各軟體內設的亂數產生器,則少有詳盡的探討。因此本論文的主要目的在於:針對SAS 6.12、SPSS 8.0、EXCEL 97、S-PLUS 2000及MINITAB 12等五種統計分析上常使用的套裝軟體,針對其內設U(0,1)亂數產生器進行較完整的介紹、比較、與探討。除了從週期長短、統計性質、電腦執行效率等三種不同觀點來評估這五種軟體內設亂數產生器的優劣之外,同時亦利用樣本平均蒙地卡羅法(sample-mean Monte Carlo method)在求解積分值上的表現作為電腦模擬的應用實例。
    With the development and popularity of computers, in different fields more and more people are using the result from computer simulation as reference. The generation of random number is one of the most important factors in applying computer simulation. Nowadays most of users use intrinsic random number generators in software to produce random numbers. However, only a few articles focus on detailed comparisons of those random number generators. Thus, in this study, we explore the random number generators in frequently used statistical software; such as SAS 6.12, SPSS 8.0, EXCEL 97, S-PLUS 2000, MINITAB 12, etc. and discuss their performances in uniform (0,1) random number generators. This study focuses not only on the comparison of period length and statistical properties of these random number generators, but also on computer executive efficiency. In addition, we also use sample-mean Monte Carlo method as an integral example of computer simulation to evaluate these random number generators.
    參考文獻: I. 中文書目
    1. 林宏澤、林清泉編著,民80,系統模擬,台北市:高立圖書有限公司。
    2. 唐惠欽著,民86,多階質數乘餘法亂數產生器之分析探討,國立成功大學工業管理研究所博士論文。
    II. 英文書目
    1. Barry, T. M. (1995), “Recommendations on the testing and use of pseudo-random number generators used in Monte Carlo analysis for risk assessment,”Risk analysis, 16, 93-105.
    2. Bright, H. S., and Enison, R. L. (1979), “Quasi-random number sequences from a long-period TLP generator with remarks on application to cryptography, ” Comp.Surveys, 11, 357-370.
    3. Casella, G., and Berger, R. L. (1990), Statistical Inference. Wadaworth, Inc., Belmont, California 94002,232-233.
    4. Eichenauer, J., Grothe, H., and Lehn, J. (1988), “Marsaglia’s lattice test and non-linear congruential pseudo random generators, ” Metrika, 35, 241-250.
    5. Fishman, G.S., and. Moore, L.R (1982), “A statistical evaluation of multiplicative congru-ential random number generators with modulus 231 - 1,” J. Amer. Statist. Assoc., 77, 129-136.
    6. Fishman, G.S. (1990), “Multiplicative congruential random number generators with modulus : an exhaustive analysis for = 32 and a partial analysis for = 48,” Math. Comp., 54, 331-334.
    7. Hull, T.E., and Dobell, A.R. (1962), “Random Number Generators,” SIAM Rev., 4,230-254.
    8. Knuth, D. (1981), The Art of Computer Programming Volume 2: Semi-numerical Algorithms, Addison-Wesley, Reading, MA.
    9. Law, A.M., and Kelton, W.D. (2000), Simulation Modeling and Analysis, 3d ed., McGraw-Hill.
    10. L`Ecuyer, P. (1988), “Efficient and portable combined pseudo-random number generators,” Comm. ACM, 31, 742-749, 774.
    11. L`Ecuyer, P. and Tezuka, S. (1991), “Structural properties for two classes of combined random number generators, ” Math. Comp., 57, 735-746.
    12. L`Ecuyer, P. (1992), Testing random number generators, Proceeding of the 1992 Winter Simul. Conf., 305-313.
    13. L`Ecuyer, P. (1994), “Uniform random numbers generation,” Ann. of Operations Res., 53, 77-120.
    14. Lehmer, D.H. (1951), “Mathematical methods in large-scale computing units,” Proceedings of the Second Symposium on Large-Scale Digital Calculating Machinery. Harvard University Press, Cambridge, MA, 141-146.
    15. Levene, H. (1952), “On the power function of tests of randomness based on runs up and down,” Ann. Math. Statistics, 23, 34-56.
    16. Lewis, T. G., and Payne, W. H. (1973), “Generalized feedback shift register pseudorandom number alogrithm,” Journal of the ACM, 20, 456-458.
    17. Marsaglia. G. (1968), “Random numbers fall mainly in the planes,” Proc. Nat. Acad. Sci.USA, 61, 25-211
    18. Marsaglia, G. et al. (1973), “Random Number Package: "Super-Duper",” School of Computer Science, McGill University.
    19. Marsaglia, G. (1985), “Matrices and the structure of random number sequences,” Linear algebraic and its appl., 67,147-156.
    20. Marsaglia, G., Zaman, A., and Tsand, W.W. (1990), “Toward a universal random number generator,” Statistics & Proability Letters, 8, 35-39.
    21. Matteis, A.D., and Pagnutti, S. (1988), “Parallelization of random number generators and long-range correlation,” Numer. Math., 53,595-608.
    22. Montgomery, D.C. (1997), Design and analysis of experiments, Wiley, New York.
    23. Moore, D. S. (1986), Tests of chi-squared type. In Goodness-of-Fit Techniques. New York: Marcel Dekker.
    24. Neiderreiter H. (1991), “Recent trends in random number and random vector generation, ” Annals of Operations Research, 31, 323-346.
    25. Ripley, B.D. (1987), Stochastic Simulation, Wiley, New York.
    26. Ripley, B.D. (1999), Modern applied statistics with S-PLUS, Springer-Verlag, New York, 3rd.
    27. Rubinstein, R.Y. (1981), Simulation and the Monte Carlo Method, John Wiley, New York.
    28. Tausworthe, R.C. (1965), “Random numbers generated by linear recurrence modulo two,” Math. Camp.19, 201-209.
    29. Wichmann, B. A., and Hill, J. D. (1982), “Algorithm AS183. An efficient and portable pseudo-random number generator,” Appl Statist. 31, 188-190; 33, 123.
    30. Ziesel, H. (1986), “A remark on AS 183. An efficient and portable pseudo-random number generator,” Appl Statist. 35, 89.
    描述: 碩士
    國立政治大學
    統計學系
    87354012
    資料來源: http://thesis.lib.nccu.edu.tw/record/#A2002001943
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋