English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50943591      Online Users : 952
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/81525
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81525


    Title: 臉書相片分類及使用者樣貌分析
    Identifying User Profile Using Facebook Photos.
    Authors: 張婷雅
    Chang, Ting Ya
    Contributors: 廖文宏
    Liao, Wen Hung
    張婷雅
    Chang,Ting Ya
    Keywords: 臉書
    人臉偵測
    環境識別
    影像標籤
    使用者樣貌分析
    Facebook
    face detection
    scene understanding
    image tag
    user behavior analysis
    Date: 2016
    Issue Date: 2016-03-01 10:40:21 (UTC+8)
    Abstract: 除了文字訊息,張貼相片也是臉書使用者常用的功能,這些上傳的照片種類繁多,可能是自拍照、風景照、或食物照等等,本論文的研究以影像分析為出發點,探討相片內容跟發佈者間之關係,希望藉由相片獲得的資訊,輔助分析使用者樣貌。
    本研究共收集32位受測者上傳至臉書的相片,利用電腦視覺技術分析圖像內容,如人臉偵測、環境識別、找出影像上視覺顯著的區域等,藉由這些工具所提供的資訊,將照片加註標籤,以及進行自動分類,並以此兩個層次的資訊做為特徵向量,利用階層式演算法進行使用者分群,再根據實驗結果去分析每一群的行為特性。
    透過此研究,可對使用者進行初步分類、瞭解不同的使用者樣貌,並嘗試回應相關問題,如使用者所張貼之相片種類統計、不同性別使用者的上傳行為、 依據上傳圖像內容,進行使用者樣貌分類等,深化我們對於臉書相片上傳行為的理解。
    Apart from text messages, photo posting is a popular function of Facebook. The uploaded photos are of various nature, including selfie, outdoor scenes, and food. In this thesis, we employ state-of-the-art computer vision techniques to analyze image content and establish the relationship between user profile and the type of photos posted.
    We collected photos from 32 Facebook users. We then applied techniques such as face detection, scene understanding and saliency map identification to gather information for automatic image tagging and classification. Grouping of users can be achieved either by tag statistics or photo classes. Characteristics of each group can be further investigated based on the results of hierarchical clustering.
    We wish to identify profiles of different users and respond to questions such as the type of photos most frequently posted, gender differentiation in photo posting behavior and user classification according to image content, which will promote our understanding of photo uploading activities on Facebook.
    Reference: [1] Viola, Paul, and Michael J. Jones. "Robust real-time face detection." International journal of computer vision 57.2 (2004): 137-154.
    [2] ImageNet
    http://image-net.org/.
    [3] Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." arXiv preprint arXiv:1409.0575 (2014).
    [4] Vinyals, Oriol, et al. "Show and tell: A neural image caption generator." arXiv preprint arXiv:1411.4555 (2014).
    [5] Hu, Yuheng, Lydia Manikonda, and Subbarao Kambhampati. "What we instagram: A first analysis of instagram photo content and user types." Proceedings of ICWSM. AAAI (2014).
    [6] Ensky’s Album Downloader for Facebook,
    https://sofree.cc/download-fb-album-photo/.
    [7] Face++,
    http://www.faceplusplus.com/.
    [8] Rekognition,
    https://rekognition.com/.
    [9] Itti, Laurent, Christof Koch, and Ernst Niebur. "A model of saliency-based visual attention for rapid scene analysis." IEEE Transactions on Pattern Analysis & Machine Intelligence 11 (1998): 1254-1259.
    [10] Cheng, Ming, et al. "Global contrast based salient region detection." Pattern Analysis and Machine Intelligence, IEEE Transactions on 37.3 (2015): 569-582.
    [11] Perazzi, Federico, et al. "Saliency filters: Contrast based filtering for salient region detection." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.
    [12] Team, R. Core. "R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012." (2014).
    https://www.r-project.org/.
    [13] 階層式分群法(Hierarchical Clustering),
    http://goo.gl/mDfDp.
    [14] 蔣佳欣 (2006),室內/戶外與建築物/自然風景之影像分類研究,碩士論文,南台科技大學資訊工程所,臺南。
    [15] Kawano, Yoshiyuki, and Keiji Yanai. "FoodCam: A Real-Time Mobile Food Recognition System Employing Fisher Vector." MultiMedia Modeling. Springer International Publishing, 2014.
    [16] Zhang, Weiwei, Jian Sun, and Xiaoou Tang. "Cat head detection-how to effectively exploit shape and texture features." Computer Vision–ECCV 2008. Springer Berlin Heidelberg, 2008. 802-816.
    [17] 王石番(1991),《傳播內容分析法》,幼獅
    Description: 碩士
    國立政治大學
    資訊科學學系
    102753007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102753007
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    300701.pdf5077KbAdobe PDF2638View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback