Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/81524
|
Title: | 以故事性的自然場景探討主角與地點在動態視覺處理上的相互影響 Investigating the Interaction of Character and Surroundings on Dynamic Visual Processing in the Perception of Narrative Natural Scene |
Authors: | 張鈺潔 Chang, Yu Chieh |
Contributors: | 黃淑麗 Huang, Shwu Lih 張鈺潔 Chang, Yu Chieh |
Keywords: | 動態視覺處理 主角 地點 一致性效果 促進效果 抑制效果 物體優勢效果 dynamic visual process character surroundings consistency effect facilitation effect inhibition effect object advantage effect |
Date: | 2016 |
Issue Date: | 2016-03-01 10:40:05 (UTC+8) |
Abstract: | 視覺辨識是極其快速而且正確的,逐步揭露作業可展示此一閃而過的動態視覺辨識歷程,本研究目的即在以此作業探討主角與地點在動態視覺辨識過程中相互影響的內涵。實驗一旨在建立主角與地點的視覺辨識基準線,結果發現主角比起地點只需累積較低空間頻率訊息即可完成正確辨識,得到物體優勢效果。實驗二旨在驗證物體與背景之間在視覺處理上的非獨立關係,透過操弄單獨呈現與同時呈現兩種視覺呈現方式,以主角辨識作業與地點辨識作業加以驗證。結果顯示對地點辨識作業而言,同時呈現情況比起單獨呈現情況只需累積較低空間頻率訊息即可完成正確辨識;對主角辨識作業而言,單獨呈現情況與同時呈現情況並無不同。除此之外,在單獨呈現情況下,仍獲得物體優勢效果。但在同時呈現情況下,物體優勢效果並不復見,反而是地點辨識優於主角辨識。實驗二結果支持物體與背景之間在視覺處理上為非獨立關係。實驗三進一步從「一致性效果」在促進層面以及抑制層面上的作用情況,探討物體與背景之間在視覺處理上相互影響的內涵。實驗三a結果顯示,在主角辨識作業中所得到的「一致性效果」,源於地點訊息對主角辨識在抑制層面的作用而來。實驗三b結果顯示,在地點辨識作業中所得到「一致性效果」,則源於主角訊息對地點辨識在促進層面與抑制層面的作用而來。實驗四進一步以同時呈報的作業方式,讓參與者對整張場景進行辨識,對於視覺系統所知覺到的主角內容與地點內容都需加以呈報,藉此再次驗證主角與地點處理的相互影響。其結果顯示在主角內容與地點內容呈報時,皆獲得「一致性效果」。除此之外,在一致情況與不一情況下皆獲得物體優勢效果。本研究以動態視覺處理模型中物體與背景平行處理且密切交換訊息之觀點解釋所得結果,並提出注意力分佈在此動態視覺處理歷程扮演重要角色。 Visual recognition is a fast and accurate process. The present study adopted a progressive revelation task, which mimics the visual dynamics appropriately, to investigate the interaction of character and surroundings in the dynamic visual processing. Experiment 1 aimed to establish visual recognition curves for character and surroundings separately as baselines. The results showed that less amount of cumulated perceptual evidence was required for character than surroundings, so that it showed the object advantage effect. In Experiment 2, the non-independent relationship between the object- and background-related visual processes was verified. The performance of isolation condition with the character and surroundings presented in isolation was compared to the concurrent condition with the two presented concurrently. The results of the surroundings recognition task showed that less amount of cumulated perceptual evidence was required for concurrent condition than isolation condition. In contrast, for the character recognition task, there was no difference between these two conditions. These results supported the non-independent relationship between object- and background-related processes. Object advantage effect was replicated in the isolation condition but not in the concurrent condition, which meant that surroundings required less amount of perceptual evidence than character for visual recognition instead. In Experiment 3, interaction between object- and background-related processes was investigated by consistency effect from both the aspects of facilitation and inhibition effects. Results of Experiment 3a showed that consistency effect was only contributed by inhibition effect in the character recognition task. Results of Experiment 3b showed that both the facilitation and inhibition effects contributed to the consistency effect in the surroundings recognition task. In Experiment 4, participants were asked to report both the contents of character and surroundings. The results showed that consistency effects occurred in both of the content reports. And also the object advantage effect appeared in both of the consistent and inconsistent conditions. Overall, the results of the present study implied that object- and background-related visual processes operate in parallel while interchange information intimately at each level of the visual processing stages. The results also suggest that deployment of attention resource played an important role in the dynamic visual process. |
Reference: | 英文文獻 Antes, J. R. (1974). The time course of picture viewing. Journal of Experimental Psycholoy, 103, 62-70. http://dx.doi.org/10.1037/h0036799 Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15(4), 600-609. doi:10.1162/089892903321662976 Bar, M. (2004). Visual objects in context. Nature Reviews, 5, 617-629. doi:10.1038/nrn1476 Bar, M. (2007). The proactive brain: using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280-289. doi:10.1016/j.tics.2007.05.005 Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions of the Royal Socity of London. Series B, Biological Sciences, 364, 1235-1243. doi: 10.1098/rstb.2008.0310 Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77-80. doi: 10.1126/science.177.4043.77 Biederman, I., Glass, A. L., & Stacy, E. W. (1973). Searching for objects in real-world scenes. Journal of Experimental Psychology, 97(1), 22-27. Retrieved from http://dx.doi.org/10.1037/h0033776 Biederman, I., Rabinowitz, J. C., Glass, A. L. & Stacy, E. W. (1974). On the information extracted from a glance at a scene. Journal of Experimental Psychology, 103(3), 597-600. doi: 10.1037/h0037158 Biederman, I., Teitelbaum, R. C., & Mezzanotte, R. J. (1983). Scene perception: a failure to find a benefit from prior expectancy or familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(3), 411-429. doi: 10.1037/0278-7393.9.3.411 Boyce, S. J., & Pollatsek, A. (1992). Identification of objects in scenes: the role of scene background in object naming. Journal of Experimental Psychology: Learning, Memory, and Cognition. 18(3), 531-543. doi: 10.1037//0278-7393.18.3.531 Boyce, S. J., Pollatsek, A., & Rayner, K. (1989). Effect of background information on object identification. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 556-566. Retrieved from http://dx.doi.org/10.1037/0096-1523.15.3.556 Davenport, J. L. (2007). Consistency effects between objects in scenes. Memory and Cognition, 35(3), 393-401. doi: 10.3758/BF03193280 Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15(8), 559-564. doi:10.1111/j.0956-7976.2004.00719.x Delorme, A., Richard, G., & Fabre-Thorpe, M. (2000). Ultra-rapid categorization of natural scenes does not rely on colour cues: a study in monkeys and humans. Vision Research, 40(16), 2187-2200. doi:10.1016/S0042-6989(00)00083-3 Delplanque, S., N’diaye, K., Scherer, K., & Grandjean, D. (2007). Spatial frequencies or emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis. Journal of Neuroscience Methods, 165(1), 144-150. doi:10.1016/j.jneumeth.2007.05.030 Dobel, C., Gumnior, H., Bölte, J., & Zwitserlood, P. (2007). Describing scenes hardly seen. Acta Psychologica, 125(2), 129-143. doi:10.1016/j.actpsy.2006.07.004 Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). Cortical area selective for visual processing of the human body. Science, 293, 2470-2473. doi:10.1126/science.1063414 Enns, J. T., & Lleras, A. (2008). What’s next? New evidence for prediction in human vision. Trends in Cognitive Sciences, 12(9), 327-333. doi:10.1016/j.tics.2008.06.001 Fabre-Thorpe, M., Richard, G., & Thorpe, S. J. (1998). Rapid categorization of natural images by rhesus monkeys. NeuroReport, 9(2), 303-308. doi:10.1097/00001756-199801260-00023 Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal of vision, 7(1), 1-29. doi: 10.1167/7.1.10 Friedman, A. (1979). Framing pictures: the role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General, 108(3), 316-355. doi:10.1037/0096-3445.108.3.316 Griffin, Z. M., & Bock, K. (2000). What the eyes say about speaking. Psychological Science, 11(4), 274-279. doi:10.1111/1467-9280.00255 Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41(10-11), 1475-1482. doi:10.1016/S0042-6989(00)00317-5 Hafri, A., Papafragou, A., & Trueswell, J. C. (2012). Getting the gist of events: recognition of two-participant actions from brief displays. Journal of Experimental Psychology: General, 142(3), 880-905. doi:10.1037/a0030045 Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427-430. doi:10.1126/science.274.5286.427 Hegdé, J. (2008). Time course of visual perception: coarse-to-fine processing and beyond. Progress in Neurobiology, 84(4), 405-439. doi:10.1016/j.pneurobio.2007.09.001 Henderson, J. M. (1992). Object identification in context: The visual processing of natural scenes. Canadian Journal of Psychology, 46(3), 319-341. doi:10.1037/h0084325 Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual review of psychology, 50, 243-271. doi:10.1146/annurev.psych.50.1.243 Hollingworth, A., & Henderson, J. M. (1998). Does consistent scene context facilitate object perception? Journal of Experimental Psychology: General, 127(4), 398-415. Retrieved from http://dx.doi.org/10.1037/0096-3445.127.4.398 Joubert, O. R., Rousselet, G. A., Fize, D., & Fabre-Thorpe, M. (2007). Processing scene context: fast categorization and object interference. Vision Research, 47, 3286-3297. doi:10.1016/j.visres.2007.09.013 Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163-11170. doi:10.1073/pnas.1005062107 Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302-4311. Retrieved from http://www.jneurosci.org/ Kauffmann, L., Ramanoël, S., & Peyrin, C. (2014). The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 8(37), 1-14. doi:10.3389/fnint.2014.00037 Kim, J-N., & Shadlen, M. N. (1999). Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience, 2(2), 176-185. doi:10.1038/5739 Loftus, G.R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of experimental psychology: Human perception and performance, 4, 565-572. http://dx.doi.org.autorpa.lib.nccu.edu.tw/10.1037/0096-1523.4.4.565 Mack, M. L., & Palmeri, T. J. (2010). Modeling categorization of scenes containing consistent versus inconsistent objects. Journal of Vision, 10(3), 1-11. doi:10.1167/10.3.11 Mackworth, N. H., & Morandi, A. J. (1967). The gaze selects informative details within pictures. Perception and psychophysics, 2, 547-552. doi: 10.3758/BF03210264 Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W.H. Freeman. Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34(1), 72-107. doi:10.1006/cogp.1997.0667 Oliva, A., & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology, 41, 176-210. doi:10.1006/cogp.1999.0728 Palmer, S. E. (1975). The effects of contextual scenes on the identification of objects. Memory and Cognition, 3, 519-526. doi:10.3758/BF03197524 Pelphrey, K. A., Morris, J. P., & McCarthy, G. (2005). Neural basis of eye gaze processing deficits in autism. Brain, 128, 1038-1048. doi:10.1093/brain/awh404 Pelphrey, K. A., Viola, R. J., & McCarthy, G. (2004). When strangers pass: processing of mutual and averted social gaze in the superior temporal sulcus. Psychological Science, 15(9), 598-603. doi:10.1111/j.0956-7976.2004.00726.x Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., …Vuilleumier, P. (2010). The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: a combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22(12), 2768-2780. doi:10.1162/jocn.2010.21424 Ploran, E. J., Nelson, S. M., Velanova, K., Donaldson, D., Petersen, S., & Wheeler, M. E. (2007). Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI. The Journal of Neuroscience, 27(44), 11912-11924. doi: 10.1523/JNEUROSCI.3522-07.2007 Posner, M. I., Nissen, M. J., & Ogden, W. (1978). Attended and unattended processing modes: the role of set for spatial location. In H. L. Pick & I. J. Saltzman(Eds.), Modes of perceiving and processing information. Hillsdale, NJ: Erlbaum. Potter, M. C. (1975). Meaning in visual search. Science, 187(4180), 965-966. doi:10.1126/science.1145183 Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory 2(5), 509–522. doi:10.1037/0278-7393.2.5.509 Ratcliff, R. (1978). A Theory of memory retrieval. Psychological Review, 85(2), 59-108. doi:10.1037/0033-295X.85.2.59 Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in lexical-decision task. Psychological Aging, 19(2), 278-289. doi:10.1037/0882-7974.19.2.278 Rousselet, G. A., Joubert, O. R., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scene. Visual Cognition, 12(6), 852-877. doi:10.1080/13506280444000553 Rousselet, G., Macé, M. J.-M., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. Journal of vision, 3, 440-455. doi:10:1167/3.6.5 Schettino, A., Loeys, T., Bossi, M., & Pourtois, G. (2012). Valence-specific modulation in the accumulation of perceptual evidence prior to visual scene recognition. PLoS ONE 7(5), 1-15. doi:10.1371/journal.pone.0038064 Schettino, A., Loeys, T., Delphanque, S., & Pourtois, G. (2011). Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study. NeuroImage, 55, 1227-1241. doi:10.1016/j.neuroimage.2011.01.009 Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195-200. doi: 10.1111/j.1467-9280.1994.tb00500.x Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409. doi:10.1016/j.tics.2009.06.003 Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6), 520-522. doi:10.1038/381520a0 VanRullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual categorization of natural and artifactual objects. Perception, 30, 655-668. doi:10.1068/p3029 Wurm, L. H., Legge, G. E., Isenberg, L. M., & Luebker, A. (1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology: Human Perception and Performance, 19(4), 899-911. doi: 10.1037/0096-1523.19.4.899
中文文獻 張志三(1999)。漫談碎形。台北:牛頓出版股份有限公司 |
Description: | 博士 國立政治大學 心理學系 96752501 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0096752501 |
Data Type: | thesis |
Appears in Collections: | [心理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
250101.pdf | 7319Kb | Adobe PDF2 | 76 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|