English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51059012      Online Users : 941
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81079


    Title: Enhancement of digital reading performance by using a novel web-based collaborative reading annotation system with two quality annotation filtering mechanisms
    Authors: 陳志銘
    Jan, Jiun-Chi;Chen, Chih-Ming;Huang, Po-Han
    Contributors: 圖檔所
    Keywords: Cooperative/collaborative learning;Human–computer interface;Interactive learning environments;Teaching/learning strategies
    Date: 2015-09
    Issue Date: 2016-02-03 10:14:47 (UTC+8)
    Abstract: Collaboratively annotating digital texts allows learners to add valued information, share ideas, and create knowledge. However, excessive annotations and poor-quality annotations in a digital text may cause information overload and divert attention from the main content. The increased cognitive load ultimately reduces the effectiveness of collaborative annotations in promoting reading comprehension. Thus, this work develops a web-based collaborative reading annotation system (WCRAS-TQAFM) with two quality annotation filtering mechanisms—high-grade and master annotation filters—to promote the reading performance of learners. Ninety-seven students from three classes of a senior high school in Taiwan were invited to participate in an 80-min reading activity in which individual readers use WCRAS with or without annotation filters. Analytical results indicate that digital reading performance is significantly better in readers who use the high-grade annotation filter compared to those who read all annotations. Moreover, the high-grade annotation filter can enhance the reading comprehension of learners in all considered question types (i.e., recall, main idea, inference, and application). Also, the Cohen’s kappa statistics was used for assessing whether the annotation selected by the high-grade annotation filter is in agreement with the annotations selected by a domain expert. The statistic results indicate that the proposed high-grade annotation filter is valid to some degree. Finally, neither of the proposed quality annotation filtering approaches significantly reduces cognitive load.
    Relation: International Journal of Human-Computer Studies,86,81-93
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.ijhcs.2015.09.006
    DOI: 10.1016/j.ijhcs.2015.09.006
    Appears in Collections:[圖書資訊與檔案學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1-s2.0-S1071581915001585-main.pdf1554KbAdobe PDF2747View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback