政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/79599
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51651550      Online Users : 509
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/79599


    Title: 以基因演算法優化最小二乘支持向量機在地籍坐標轉換之研究
    Authors: 林老生;黃鈞義
    Lin, Lao-Sheng;Huang, Jyun-Yi
    Contributors: 地政系
    Keywords: 六參數轉換;坐標轉換;基因演算法;最小二乘支持向量機
    Affine Coordinate Transformation;Coordinate Transformation;Genetic Algorithm (GA);Least Squares Support Vector Machine (LSSVM)
    Date: 2015-07
    Issue Date: 2015-12-08 17:30:32 (UTC+8)
    Abstract: 本文提出以基因演算法(Genetic Algorithm, GA)優化最小二乘支持向量機(Least Squares Support Vector Machine, LSSVM)系統參數,以提升地籍坐標轉換精度。利用花蓮與台中兩實驗區的真實資料,以TWD67(Taiwan Datum 1967)轉換至TWD97(Taiwan Datum 1997)的地籍坐標轉換為例,驗證以GA優化後之LSSVM在地籍坐標轉換精度提升的效能。根據實驗結果顯示:(1)LSSVM未優化前,三種核函數的坐標轉換精度表現以RBF(Radial Basis Function)最佳,其次為LIN(Linear kernel),最差為POLY(Polynomial kernel)。(2)LSSVM之RBF經GA參數優化後(RBF+GA),其轉換精度優於RBF。(3)進行RBF系統參數優化後,花蓮與台中兩實驗區之RBF+GA相對於RBF的精度提升率,分別為20%及32%。
    The least squares support vector machine (LSSVM) is applied to study the cadastral coordinate transformation accuracy performances. Three kernel functions, i.e., polynomial function (POLY), linear kernel (LIN), and radial basis function (RBF), are implemented in LSSVM. The genetic algorithm (GA) is proposed to optimize the system parameters of LSSVM with RBF (designed as RBF+GA). Two data sets for Hualien and Taichung were tested and analyzed. The test results show that: (1) regarding to the coordinate transformation accuracies after applying LSSVM with different kernel functions, RBF is the best, LIN is the second place, and POLY is the worst; (2) if the system parameters of RBF optimized by GA, the coordinate transformation accuracies of RBF+GA are better than that of RBF; and (3) comparing with RBF, the coordinate transformation accuracy improving rate of RBF+GA, for the Hualien and the Taichung data sets are 20% and 32%, respectively.A Study of Cadastral Coordinate Transformations Using the Genetic Algorithm Based on the Least Squares Support Vector Machine
    Relation: 國土測繪與空間資訊,3(2),67-85
    Data Type: article
    Appears in Collections:[Department of Land Economics] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    67-85.pdf1117KbAdobe PDF2621View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback