English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51862463      Online Users : 346
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/79422


    Title: Reducing signal loss of the parahippocampal gyrus improves imaging of the default-mode network in 3.0-T MRI: the effect of susceptibility-induced field gradients
    Authors: Tseng, Yu-Sheng;Huang, Teng-Yi;Tsai, Shang-Yueh
    蔡尚岳
    Contributors: 應物所
    Keywords: default-mode network (DMN);parahippocampal gyrus (PHC)
    Date: 2015-10
    Issue Date: 2015-11-25 16:36:27 (UTC+8)
    Abstract: Previous investigations have indicated that the default-mode network (DMN) is highly involved in memory processing in the parahippocampal gyrus (PHC). However, because of susceptibility-related signal loss, parahippocampal activation in the DMN is difficult to detect in resting-state functional MRI experiments that are conducted using a 3.0-T MRI scanner. This study investigated the magnetic field gradients of various brain regions and attempted to compensate for signal loss in the PHC using an optimized slice orientation. The field gradients, signal intensities and DMN functional connectivity (FC) of the PHC were investigated using datasets acquired from 18 healthy volunteers. The results show that the field gradient component parallel to the main magnetic field dominates the PHC. The results indicate that the signal intensities and FC of the DMN are significantly low in the PHC when the slice orientation of the imaging plane is transversal. Whether the voxel dimension is isotropic or anisotropic exerts a minimal effect in altering the slice orientation dependence. In conclusion, the results of this study support the selection of the coronal or sagittal planes for imaging of the DMN.
    Relation: NMR in Biomedicine, 刊登於網路, 1-8
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1002/nbm.3435
    DOI: 10.1002/nbm.3435
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1-8.pdf1585KbAdobe PDF21005View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback