政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/79274
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50808862      Online Users : 677
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/79274


    Title: 奇異值分解在影像處理上之運用
    Singular Value Decomposition: Application to Image Processing
    Authors: 顏佑君
    Yen, Yu Chun
    Contributors: 薛慧敏
    顏佑君
    Yen, Yu Chun
    Keywords: 奇異值分解
    低階近似
    影像處理
    影像壓縮
    去除影像雜訊
    singular value decomposition
    low rank approximation
    image processing
    image compression
    image denoising
    Date: 2015
    Issue Date: 2015-11-02 15:59:52 (UTC+8)
    Abstract: 奇異值分解(singular valve decomposition)是一個重要且被廣為運用的矩陣分解方法,其具備許多良好性質,包括低階近似理論(low rank approximation)。在現今大數據(big data)的年代,人們接收到的資訊數量龐大且形式多元。相較於文字型態的資料,影像資料可以提供更多的資訊,因此影像資料扮演舉足輕重的角色。影像資料的儲存比文字資料更為複雜,若能運用影像壓縮的技術,減少影像資料中較不重要的資訊,降低影像的儲存空間,便能大幅提升影像處理工作的效率。另一方面,有時影像在被存取的過程中遭到雜訊汙染,產生模糊影像,此模糊的影像被稱為退化影像(image degradation)。近年來奇異值分解常被用於解決影像處理問題,對於影像資料也有充分的解釋能力。本文考慮將奇異值分解應用在影像壓縮與去除雜訊上,以奇異值累積比重作為選取奇異值的準則,並透過模擬實驗來評估此方法的效果。
    Singular value decomposition (SVD) is a robust and reliable matrix decomposition method. It has many attractive properties, such as the low rank approximation. In the era of big data, numerous data are generated rapidly. Offering attractive visual effect and important information, image becomes a common and useful type of data. Recently, SVD has been utilized in several image process and analysis problems. This research focuses on the problems of image compression and image denoise for restoration. We propose to apply the SVD method to capture the main signal image subspace for an efficient image compression, and to screen out the noise image subspace for image restoration. Simulations are conducted to investigate the proposed method. We find that the SVD method has satisfactory results for image compression. However, in image denoising, the performance of the SVD method varies depending on the original image, the noise added and the threshold used.
    Reference: Aronoff, S., (1989). Geographic information systems: A management perspective. Geocarto international, 4, 4, 58.

    Banham, M.R., Katsaggelos, A.K., (1997). Digital image restoration. Signal processing magazine, IEEE, 14, 2, 24-41.

    Eckart, C., Young, G.,(1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 3, 211-218.

    Ganic, Zubair, N., and Eskicioglu, A.M., (2003). An optimal watermarking scheme based on singular value decomposition. Proceedings of the IASTED international conference on communication, network, and information security (CNIS), 85-90.

    Gorodetski, V.I., Popyack, L.J., Samoilov, V., and Skormin, V.A., (2001). SVD-Based approach to transparent embedding data into digital images. Proc. Int. workshop on mathematical methods, models and architecture for computer network security, lecture notes in computer science, 2052, 263-274.

    Kamm, J. L., (1998). SVD-Based methods for signal and image restoration, PhD thesis.

    Karadimitriou, K., Fenstermacher, M., (1997). Image compression in medical image databases using set redundancy. Data compression conference, 1997. DCC `97. proceedings, IEEE.

    Konstantinides, K., Natarajan, B., and Yovanof, G.S., (1997). Noise estimation and filtering using block-based singular value decomposition. IEEE Trans. Image Processing, 6, 479- 483.

    Menze, B.H., (2015). The multimodal brain tumor image segmentation benchmark (BRATS). Medical imaging, IEEE transactions on, 34, 10, 1993-2024.

    Sadek, R. A., (2012). SVD based image processing applications: state of
    the art, contributions and research challenges. International Journal of Advanced Computer Science and Applications (IJACSA), 3, 7, 26-34.

    Sanches, J.M., Nascimento, J.C., Marques, J.S.(2008). Medical image noise reduction using the Sylvester–Lyapunov equation. Image processing, IEEE Transactions on, 17, 9, 1522-1539.
    Description: 碩士
    國立政治大學
    統計研究所
    102354003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102354003
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File SizeFormat
    400301.pdf2381KbAdobe PDF2858View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback