政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/78862
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113324/144300 (79%)
Visitors : 51145180      Online Users : 850
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/78862


    Title: 資料採礦應用於中小企業服務業信用風險模型建置
    Other Titles: Applications of Data Mining in Establishing Credit Risks Model of Service of SMEs
    Authors: Hsieh, Sang-Wen;Lin, Chi-Feng
    謝尚文
    Contributors: 統計系
    Keywords: 新巴賽爾資本協定;資料採礦;羅吉斯迴歸;信用評等
    Basel II;Data Mining;Logistic Regression;Credit Score
    Date: 2009-10
    Issue Date: 2015-10-06 14:51:52 (UTC+8)
    Abstract: 2008年,美國華爾街危機影響全球金融市場,即使美國擬出許多救市計畫,全球股市依舊暴跌。在此危機衝擊下,各大金融機構不但利潤下滑,且資產減記和信貸損失也愈來愈嚴重。造成此一現象的主因即是次級房貸的影響,次級房貸主要是針對收入低、信用不佳卻需要貸款購屋的民眾,這類客戶通常借貸不易,倘若銀行內部沒有完善的評等機制那放款則需承受較大的違約風險。為因應此趨勢,本研究以台灣未上市中小企業為實例,資料的觀察期間為2003至2005年,透過資料採礦流程,建構企業違約風險模型及其信用評等系統。本研究分別利用羅吉斯迴歸、類神經網路、和分類迴歸樹三種方法建立模型並加以評估比較其預測能力。發現羅吉斯迴歸模型對於違約戶的預測能力及有效性皆優於其他兩者,並選定為本研究之最終模型,並對選定之模型作評估及驗證,發現模型的預測能力表現尚屬穩定,確實能夠在銀行授信流程實務中加以應用。
    In 2008, the financial crisis on Wall Street had severe impacted the global economy. Although the US government has drawn up regulatory policies in an attempt to save the stock market, the value of global stock market has shrunk drastically. As such, the profits of many financial institutes` have not only plunged, their value of assets have decreased while loss related to mortgage became more severe. The main cause behind this global phenomenon can be attributed to the effect of subprime mortgages. Subprime mortgages are mainly aimed at consumers who have low income and poor credit history but wish to purchase homes through the means of mortgage. These consumers usually find it difficult to obtain mortgage loans. If banks do not have a well structured evaluation system, they would have to bear more risks in the case of a default. To better understand this trend, this research chooses middle and small private enterprises as its samples. The period of observation is 2003 to 2005. Using the data mining process, this research builds a model that shows the risk associated with contract failure and credit score system.The research builds a model based on logistic regression, Neural Network, and cart to compare and contrast each of the three model`s ability to predict. The result shows that logistic regression is better at predicting defaults and is more effective than the other two models. The research, therefore, concludes logistic regression model as the research`s final model to study and evaluate. In process, the research result demonstrates that the logistic regression model makes more precise prediction and its prediction is fairly stable. Logistic regression model is capable for banks to employ in performing credit check.
    Relation: Journal of Data Analysis, 4(5), 55-82
    Data Type: article
    Appears in Collections:[Department of Economics] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2446View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback