Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/78751
|
Title: | 小波理論於曲風辨識上之應用 The Application of Wavelet Transform on Automatically Musical Genre Classification |
Authors: | 陳彥名 |
Contributors: | 曾正男 陳彥名 |
Keywords: | 小波轉換 線性判別分析 離散餘弦轉換 決策樹 曲風辨識 |
Date: | 2015 |
Issue Date: | 2015-10-01 14:17:32 (UTC+8) |
Abstract: | 隨著科技的進步,網際網路已充斥在我們的生活之中。音樂也不再以硬體儲存的方式流傳(例如CD、黑膠唱片),而是轉變為數位音樂的方式,透由網路平台散播。許多數位音樂串流服務平台網站也如雨後春筍般誕生,例如iTunes、Spotify、Musicovery。加上文化水平的提升,音樂已是現代人生活之中,不可或缺的一部分。世界上的音樂難以計數,如何將音樂分門別類做好管理乃為現代商業應用的一個重要課題。因此,音樂曲風自動化辨識的技術確實為一個實用且難以迴避的課題。
過去在曲風自動化辨識已有許多研究,但內容不外乎音訊處理、頻譜轉換、特徵擷取、特徵降維、監督式學習機。在相同的模式下提出各種改良,或是全新的特徵擷取…諸如此類,而辨識率也達到了七成以上。本篇論文採用不同於以往的做法,將訊號進行頻譜轉換後層層降維,所得之訊號搭配LDA與決策樹進行辨識,最後去比較與分析離散餘弦轉換與小波轉換在辨識率上的優劣。我們發現搭配小波轉換與混合LDA及決策樹的方法,可以將音樂曲風之分辨率達到八成五以上。 目錄
口試委員會審定書.................................................................................................................. i
致謝.......................................................................................................................................... ii
中文摘要.................................................................................................................................. iii
Abstract .................................................................................................................................... iv
目錄.......................................................................................................................................... vi
表目錄...................................................................................................................................... viii
圖目錄...................................................................................................................................... ix
第一章緒論....................................................................................................................... 1
第一節研究背景與動機..................................................................................... 1
第二節研究目的................................................................................................. 2
第三節研究架構................................................................................................. 3
第二章文獻探討.............................................................................................................. 4
第一節前言......................................................................................................... 4
第二節預處理..................................................................................................... 5
第三節音樂特徵擷取......................................................................................... 7
一、梅爾倒頻譜係數(Mel Frequency Cepstral Coefficients, MFCC)
................................................................................................................. 8
二、雷尼熵值(Renyi Entropy, RE) .................................................. 9
三、頻譜質心(Spectral Centroid, SC).............................................. 9
四、強度與音色(Intensity and Timbre) ........................................... 9
第四節建置分類器............................................................................................. 11
一、支持向量機(Support Vector Machines, SVM) ......................... 11
二、最近鄰居法(k-Nearest Neighbors algorithm, k-NN)................ 12
三、高斯混合模型(Gaussian Mixture Models, GMM)................... 13
第三章降維方法.............................................................................................................. 14
第一節小樣本分析............................................................................................. 14
第二節音訊分析與k-means 演算法................................................................. 16
第三節頻譜與降維............................................................................................. 17
第四節線性判別分析......................................................................................... 21
一、監督式維度縮減(Supervised Dimension Reduction)............... 21
二、LDA 公式推導............................................................................... 22
三、LDA 實驗結果............................................................................... 28
第四章實驗方法.............................................................................................................. 30
第一節挑選實驗音樂樣本................................................................................. 31
第二節音訊處理................................................................................................. 33
第三節維度縮減................................................................................................. 34
第四節隨機七三分配......................................................................................... 34
第五節線性判別分析之降維與預測................................................................. 35
第六節離散小波轉換......................................................................................... 36
第七節系統決策樹............................................................................................. 42
第八節混合系統................................................................................................. 44
一、Classical - Classical ........................................................................ 45
二、Classical - Electron ......................................................................... 45
三、Classical - Rock .............................................................................. 45
四、Classical - Pop................................................................................. 46
五、Classical - Vocal Pop ...................................................................... 46
六、其餘情境......................................................................................... 48
第九節混合系統的最終決策............................................................................. 50
第五章結論與未來展望............................................................................................... 54
參考文獻.................................................................................................................................. 55 |
Reference: | [1]
D.Pye
Content-Based Methods for the Management of Digital Music
in Proc IEEE Conf. Acoustics, Speech, Signal Processing (ICASSP), pp. 2437-2400, 2000
[2]
Dhanalakshmi, P. , Palanivel, S. , Ramalingam, V.
Classification of audio signals using SVM and RBFNN.
Expert Systems with Applications, 36(3), 6069-6075. doi: DOI 10.1016/j.eswa.2008.06.126, 2009
[3]
Xu, C. S. , Maddage, N. C. , Shao, X.
Automatic music classification and summarization.
Ieee Transactions on Speech and Audio Processing, 13(3), 441-450. doi: Doi 10.1109/Tsa.2004.840939, 2005
[4]
Ajmera, J. , McCowan, I. , Bourlard, H.
Speech/music segmentation using entropy and dynamism features in a HMM classification framework.
Speech Communication, 40(3), 351-363. doi: Doi 10.1016/S0167-6393(02)00087-0, 2003
[5]
Shao, B. , Wang, D. D. , Li, T. , Ogihara, M.
Music Recommendation Based on Acoustic Features and User Access Patterns.
Ieee Transactions on Audio Speech and Language Processing, 17(8), 1602-1611. doi: Doi 10.1109/Tasl.2009.2020893, 2009
109(9):553--572, 1938.
[6]
Grey, J. M., Gordon, J. W.
Perceptual effects of spectral modifications on musical timbres.
Journal of the Acoustical Society of America 63 (5), 1493–1500, doi:10.1121/1.381843, 1978.
[7]
Duo-Fu Bao
Supervised and Unsupervised Music Genre Classification
NTUT Institute of Computer and Communication, 2008
[8]
Shih-kai Chen
Methodology of stage lighting control based on music emotion feeling.
Department of Industrial Design, National Cheng Kung University 2015
[9]
Cortes, C. Vapnik, V.
Support-vector networks.
Machine Learning 20 (3): 273. doi:10.1007/BF00994018, 1995
[10]
Drucker, Harris; Burges, Christopher J. C.; Kaufman, Linda; Smola, Alexander J.; and Vapnik, Vladimir N.
Support Vector Regression Machines.
in Advances in Neural Information Processing Systems 9, NIPS 1996, 155–161, MIT Press. 1997
[11]
Altman, N. S.
An introduction to kernel and nearest-neighbor nonparametric regression.
he American Statistician 46 (3): 175–185. doi:10.1080/00031305.1992.10475879. 1992
[12]
Lie, L. , Liu, D. , Zhang, H. J.
Automatic mood detection and tracking of music audio signals.
Ieee Transactions on Audio Speech and Language Processing,9014(1), 5-18. doi: Doi 10.1109/Tsa.2005.860344. 2006
[13]
Baum, L. E.; Petrie, T.
Statistical Inference for Probabilistic Functions of Finite State Markov Chains.
The Annals of Mathematical Statistics 37 (6): 1554–1563. doi:10.1214/aoms/1177699147. Retrieved 28 November 2011. 1966
[14]
Nock, R. and Nielsen, F.
On Weighting Clustering.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 (8), 1–13, 2006
[15]
Steinhaus, H.
Sur la division des corps matériels en parties.
Bull. Acad. Polon. Sci. 4 (12): 801–804. MR 0090073. Zbl 0079.16403 (French). 1957
[16]
MacQueen, J. B.
Some Methods for classification and Analysis of Multivariate Observations.
1, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. 1967: pp. 281–297. 2009
[17]
Lloyd, S. P.
Least square quantization in PCM.
ell Telephone Laboratories Paper. 1957. Published in journal much later: Lloyd., S. P. Least squares quantization in PCM. IEEE Transactions on Information Theory. 1982, 28 (2): 129–137. doi:10.1109/TIT.1982.1056489. 2009
[18]
Jake Vanderplas
Comparison of Manifold Learning methods
http://scikit-learn.org/stable/auto\\_examples/manifold/plot\\_compare\\_methods.html
[19]
E-Course of NUTH
https://ecourse.nutn.edu.tw/
[20]
曾正男
一套提升凌波函數逼近能力與平滑度的方法
國立中央大學 民國85年
[21]
Decision Trees Analysis
http://www.mindtools.com/dectree.html?
[22]
格式工廠
http://www.azofreeware.com/2008/10/formatfactory-155.html |
Description: | 碩士 國立政治大學 應用數學研究所 101751014 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0101751014 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 341 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|