政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/78225
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51056014      Online Users : 876
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/78225


    Title: Spatial price discrimination in a symmetric barbell model: Bertrand vs. Cournot
    Authors: Sun, Chia-Hung;Lai, Fu-Chuan
    賴孚權
    Contributors: 財政系
    Keywords: Bertrand competition;Cournot competition;D43;L22;R32;Spatial discrimination
    Date: 2014-03
    Issue Date: 2015-09-03 14:48:06 (UTC+8)
    Abstract: This paper investigates the theory of spatial discrimination for general demands and general transportation costs in a barbell model, where markets` locations are assumed to be at opposite endpoints of a line. Duopoly firms in the Bertrand model always differentiate maximally, whereas in the Cournot model the market demand structure is not so critical, but the functional form of the transportation cost plays a crucial role in determining equilibrium location. Non-maximal distance appears in the Cournot equilibrium when a convex transportation cost is allowed, bringing about the findings that the equilibrium consumer surplus may be higher and the equilibrium profits may be lower under Cournot competition than under Bertrand competition.
    Resumen Este artículo investiga la teoría de la discriminación espacial para demandas generales y costos de transporte generales en un modelo de concentración en dos extremos ( barbell), donde se supone que las ubicaciones de los mercados están en puntos totalmente opuestos de una línea. Las empresas de duopolio en el modelo de Bertrand siempre diferencian al máximo, mientras que en el modelo de Cournot la estructura de la demanda del mercado no es tan importante, sino que la forma funcional del costo del transporte juega un papel crucial a la hora de determinar la ubicación del equilibrio. La distancia no-máxima aparece en el equilibrio de Cournot cuando se permite un costo de transporte convexo, lo que lleva a concluir que el excedente de equilibrio del consumidor puede ser mayor y los beneficios de equilibrio pueden ser inferiores bajo una competencia de Cournot que bajo una competencia de Bertrand.
    Relation: Papers in Regional Science, 93(1), 141-158
    Data Type: article
    DOI link: http://dx.doi.org/10.1111/j.1435-5957.2012.00476.x
    DOI: 10.1111/j.1435-5957.2012.00476.x
    Appears in Collections:[Department of Public Finance] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    141-158.pdf519KbAdobe PDF2641View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback