Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/78055
|
Title: | 小區域死亡率模型與生命表編算 A Study of Mortality Models and Life Table Construction of Small Areas |
Authors: | 鍾陳泰 Chung, Chen Tai |
Contributors: | 余清祥 Yue, C.J. 鍾陳泰 Chung, Chen Tai |
Keywords: | 小區域人口推估 生命表 修勻 電腦模擬 標準死亡率 Small Area Estimation Life Table Graduation Methods Computer Simulation Standard Mortality Ratio |
Date: | 2015 |
Issue Date: | 2015-09-01 16:09:32 (UTC+8) |
Abstract: | 臺灣各縣市人口結構差異明顯,各縣市的人口出生、老化程度都不盡相同,而且在醫療分配及社會資源的使用也有很大的差異,因此各縣市應因應各地特性發展不同的小區域人口推估方法。由於樣本數與變異數成反比,人數較少者的死亡率(像是高齡人口)通常震盪較大,藉由適當的修勻(Graduation)調整,通常可降低年齡層間的死亡率震盪。然而,當縣市層級的人數太少時,只依賴修勻往往不足,多半會再參考人口較多的大母體之死亡率。例如:傳統的的貝氏修勻,使用Lee-Carter之類的參數死亡模型(Lee and Carter, 1992),或是透過小區域及大母體的死亡率比值(王信忠, 2012)。然而過去研究較少全面性的比較這些方法,尤其是用於人數較少(如:十萬人)的地區。 本文以探討小區域生命表及死亡率推估為目標,著眼於人數不多於五萬人,尋求較為適合臺灣及類似國家的死亡率編算方法。由於修勻或貝氏等方法可視為增加樣本數,本文將擴大樣本分為四種方式:「同地同時」、「同地異時」、「異地同時」、「異地異時」,亦即將死亡資料的整併分成是否限定於小區域,以及是否可擴及其他年度。本文藉由電腦模擬測試,提供在各種限制之下,最合適小區域生命表建構的準則。其中,本文假設大、小區域的死亡率間存有三種情境的關係:定值、遞增、V字型,藉由調整大小區域死亡率比值間的幅度,探討大母體及小區域間的差異對實務使用的影響。研究發現,Partial SMR方法是一個值得參考的方法,當大小區域死亡率類型接近時的效果不錯,甚至可用於人數小於一萬人,但若死亡率類型差異過大,修勻方法會有限制,使用時需格外謹慎。 The population structure, life expectancy (and age-specific mortality rates), and the speed of population aging vary a lot in different county of Taiwan. Each county has its own policy planning according to the needs. However, the county level population is usually not enough to provide stable estimates, such as of the life expectancies and mortality rates at the county level. Thus, certain graduation methods are applied to stabilize these estimates. However, only a few studies focus on comparing different types of graduation methods, including traditional graduation methods, Bayesian methods, and parametric mortality models. In this study, we separate the graduation methods into four types, according to if using only the small area data and if one year or multiple years of data are used, and explore which methods are appropriate to the areas with population fewer than 100,000. We use computer simulation to evaluate the graduation methods. We found that the Standard Mortality Ratio is promising when the mortality profiles of small and large populations are similar, and it is a feasible solution even for the areas with population fewer than 10,000. However, if the mortality profiles differ significantly, all graduation methods need to be applied with care. |
Reference: | 中文部分 內政部。國民生命表。http://sowf.moi.gov.tw/stat/Life/T06-complete.html 內政部。簡易生命表。http://sowf.moi.gov.tw/stat/Life/T04-analysis.html 王信忠、金碩、余清祥(2012)。小區域死亡率推估之研究。人口學刊,45,121-154。 余清祥(1997)。修勻:統計在保險的應用。臺北市:雙葉書廊。 林志軒(2014)。小區域死亡率模型的探討。國立政治大學統計學研究所碩士論文。 金碩(2011)。修勻與小區域人口之研究。國立政治大學統計學研究所碩士論文。 郭孟坤與余清祥(2008)。電腦模擬,隨機方法與人口推估的實證研究。人口學刊, 36,67-98。 曹郁欣(2013)。小區域生育率與人口推計研究。國立政治大學統計學研究所碩士論文。 陳政勳與余清祥(2010)。小區域人口推估研究:臺北市、雲嘉兩縣、澎湖縣的實證分析。人口學刊,41,153-182。 歐長潤(2008)。APC模型估計方法的模擬與實證研究。國立政治大學統計學研究所碩士論文。
英文文獻 Australian Bureau of Statistics. Life Tables for Aboriginal and Torres Strait Islander Australians, 2010-2012. http://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/3302.0.55.003Explanatory%20Notes12010-2012?OpenDocument Chiang, C. L. (1984). The Life Table and its Applications. Florida: Robert E. Krieger Publishers. Efron, B. (1979). Bootstrap Methods: Another Look at the Jacknife, The Annals of Statics, 7(1), 1-26. Elias S. W. Shiu (1984). Minimum-R_zMmoving-weighted-average formulas. Transactions of Society of Acturaries, 36, 489-500. Greville, T.N.E. (1943). Short Methods of Constructing Abridged Life Tables. Record of American Institute of Actuaries, (32), 1943, 29-43. Greville, T. N. E. (1945). Actuarial Note : Some Extensions of Mr. Beers`s Method of Interpolation, American Institute of Actuaries, 34, 21-34 Greville, T.N.E. (1967). Spline Functions, Interpolation and Numerical Quadrature, Mathematical Methods for Digital Computers, Wiley, New York, 156-168. Koissi, M.C., Shapiro, A. F., & Högnäs, G. (2006). Evaluating and Extending the Lee-Carter Model for Mortality Forecasting: Bootstrap Confidence Interval, Insurance: mathematics and Economics, 38(1), 1-20. Lee, R. D. & Carter, L. R. (1992). Modeling and forecasting US mortality, Journal of the American Statistical Association, 87(419), 659-671. Lee, R. D. (2000). The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications, North American Actuarial Journal, 4(1), 80-91. Lee, R. D. & Miller, T. (2001). Evaluating the Performance of the Lee-Carter Method for Forecasting mortality, Demography, 38(4), 547-549. Lee, W. C. (2003). A Partial SMR Approach to Smoothing Age-specific Rates, Annals of Epidemiology, 13(2), 89-99. Rao, J. N. K. (2003). Small Area Estimation. Hoboken, NJ:John Wiley & Sons. Statistics New Zealand Tatauranga Aotearoa. New Zealand Abrigde Period Life Table: 2012-14. Ministry of Health, Labour and Welfare (2013), Complete Life Tables and Abridged Life Tables. http://www.mhlw.go.jp/english/database/db-hw/lifetb13/ Whittaker, E. T. (1922). On a New Method of Graduation, Proceedings of the Edinburgh Mathematical Society, 41, 63-75. Office for National Statistics (2014). Life Expectancy at Birth and at Age 65 by Local Areas in England and Wales, 2011-13. |
Description: | 碩士 國立政治大學 統計研究所 102354022 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0102354022 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
402201.pdf | 1032Kb | Adobe PDF2 | 285 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|