English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50753370      Online Users : 647
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/77555
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/77555


    Title: 在雲端運算架構下建立投資策略校準平台
    The Establishment of The Platform for The Fine Tuning Investment Strategies based on The Architecture of Cloud Computing
    Authors: 吳東霖
    Contributors: 劉文卿
    吳東霖
    Keywords: 程式交易
    投資策略模型
    技術分析
    Date: 2015
    Issue Date: 2015-08-17 14:08:01 (UTC+8)
    Abstract: 投資策略模型有千百種,背後的運算邏輯也大不相同,若是運用不同的演算法進行建模,預測能力必定也不相同。投資人若對標的物僅使用一種策略模型進行預測,其預測力有其上限,考量的因素也無法全面。再進場之後獲利時間點之選擇亦無法精準預測。此時如何能夠同時掌握不同策略模型間的特性和優點,以及找到一套最適當的出場時機規則,為本研究欲解決之問題。
    欲解決上述之問題,本研究欲建構出一個即時的投資交易平台,透過多種不同演算法的策略模型,以及同時使用不同時間粒度的歷史資料建出之模型相互參考並輔以權重,使得進場信號的產生不再是僅依靠單一策略,進而提升預測的準確度。此部分將運用Apache Storm的分散式架構來進行實作,從接收市場每秒鐘的即時報價、運算完該秒鐘上千種的市場狀態、再到多個策略間彼此產出信號,僅需要花費毫秒級別的時間即可完成,並轉交給券商下單。而搓合的結果則是透過Kafka的訊息傳遞機制來實現,系統以訂單的狀態來判定最佳的出場時機。
    Reference: 1. Fan, A and Palaniswami, M. (2001), Stock selection using support vector machines, Neural Networks, 2001. Proceedings. IJCNN `01. International Joint Conference on.
    2. Qinghua Wen, Zehong Yang, Yixu Song and Peifa Jia (2009) , Automatic stock decision support system based on box theory and SVM algorithm, Expert Systems with Applications Volume 37, Issue 2, March 2010, Pages 1015–1022.
    3. Shom Prasad Das and Sudarsan Padhy (2012), International Journal of Computer Applications (0975 – 8887) Volume 41– No.3, March 2012.
    4. lebeling Kaastra and Milton Boyd (1996), Designing a neural network for forecasting financial and economic time series, Neurocomputing Volume 10, Issue 3, April 1996, Pages 215–236, Financial Applications, Part II.
    5. Wensheng Dai, Jui-Yu Wu, Chi-Je Lu (2012), Combining nonlinear independent component analysis and neural network for the prediction of Asian stock market indexes, Expert Systems with Applications Volume 39, Issue 4, March 2012, Pages 4444–4452.
    6. Muh-Cherng Wu, Sheng-Yu Lin and Chia-Hsin Lin (2006), An effective application of decision tree to stock trading, Expert Systems with Applications
    7. Volume 31, Issue 2, August 2006, Pages 270–274.
    8. Long Wang and Shu-Hui Chan (2006), Stock market trading rule discovery using two-layer bias decision tree, Expert Systems with Applications Volume 30, Issue 4, May 2006, Pages 605–611.
    Description: 碩士
    國立政治大學
    資訊管理研究所
    102356027
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102356027
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    602701.pdf1362KbAdobe PDF257View/Open
    602702.pdf1362KbAdobe PDF2193View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback