English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50967363      Online Users : 936
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/77534


    Title: 影響民眾使用行動銀行之關鍵因素探討
    A Study of Key Factors Affecting Consumers’ Intention to Use Mobile Banking
    Authors: 譚嘉玲
    Contributors: 張愛華
    李嘉林

    譚嘉玲
    Keywords: 行動銀行
    創新擴散理論
    加值服務
    移轉障礙
    正向口碑
    Date: 2015
    Issue Date: 2015-08-17 14:04:18 (UTC+8)
    Abstract: 本論文之研究目的為找出影響民眾使用行動銀行使用意願的關鍵因素。本研究之研究模型以創新擴散理論為基礎架構,同時納入加值服務、移轉障礙、品牌熟悉度、信任以及服務品質,用以探討民眾使用行動銀行的態度以及意願。本研究並將所提出之研究模型進行實證分析,研究對象為台灣地區的民眾,包括實際以及具高度潛力的行動銀行未來使用者,共回收730份有效問卷,其中446份有行動銀行使用經驗,另外284份則無。本研究模型變數包含相對優越性、複雜性、相容性、加值服務、人際關係、轉換成本、替代方案吸引力、品牌熟悉度、信任、服務品質、態度、使用意願以及正向口碑。本研究使用LISREL 8.7進行結構方程模式分析,將回收之樣本依照行動銀行使用經驗的有無個別分析其結果,分析結果顯示,針對有行動銀行使用經驗的民眾,相對優越性、加值服務、信任、服務品質與民眾對於行動銀行的態度呈現顯著正相關;而轉換成本則對民眾對於行動銀行的態度呈現顯著負相關;此外,民眾對於行動銀行之態度也與其使用意願有顯著正相關,民眾的使用意願更與其正向口碑有顯著正相關。針對沒有行動銀行使用經驗的民眾,相容性、加值服務與民眾對於行動銀行的態度呈現顯著正相關;而人際關係與替代方案吸引力則對民眾對於行動銀行的態度呈現顯著負相關;此外,民眾對於行動銀行之態度也與其使用意願有顯著正相關。 不同於以往的研究,本研究針對台灣地區之行動銀行應用程式進行討論,並且納入了許多從未被應用在行動銀行的因素,包含加值服務、移轉障礙、正向口碑等變數,是一篇十分創新的研究。本研究之研究結果可作為日後學術研究之參考,亦可作為銀行推廣行動銀行時的實務參考。
    Reference: 一、中文部分
    1. Citibank Taiwan. (2010.12.1). 行動生活全台線上大調查。Available at: https://www.citibank.com.tw/global_docs/chi/pressroom/20101201.pdf
    2. Electronic Commerce Times. (2011.8.1). 電子商務新藍海 行動商務世代來臨。Available at: http://www.ectimes.org.tw/Shownews.aspx?id=110130193358
    3. Institute for Information Industry. (2014.7.21). 資策會FIND: 2014年上半年消費者行為調查出爐。Available at: http://www.iii.org.tw/service/3_1_1_c.aspx?id=1367
    4. Taiwan Network Information Center, TWNIC. (2014). 2014年「台灣寬頻網路使用調查」結果公布。Available at: http://www.twnic.net.tw/NEWS4/135.pdf
    二、英文部分
    1. Aaker, D. A., & Equity, M. B. (1991). The Free Press. New York, 206.
    2. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior (pp. 11-39). Springer Berlin Heidelberg.
    3. Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour.
    4. Al-Somali, S. A., Gholami, R., & Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29(2), 130-141.
    5. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411.
    6. Anderson, J. C., & Narus, J. A. (1995). Capturing the value of supplementary services. Harvard Business Review, 73(1), 75-83.
    7. Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of marketing Research, 291-295.
    8. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.

    9. Baltas, G. (1997). Determinants of store brand choice: a behavioral analysis. Journal of product & brand management, 6(5), 315-324.
    10. Barnes, J. G. (1997). Closeness, strength, and satisfaction: examining the nature of relationships between providers of financial services and their retail customers. Psychology & Marketing, 14(8), 765-790.
    11. Beatty, S. E., Mayer, M., Coleman, J. E., Reynolds, K. E., & Lee, J. (1996). Customer-sales associate retail relationships. Journal of retailing, 72(3), 223-247.
    12. Benedicktus, R. L., Brady, M. K., Darke, P. R., & Voorhees, C. M. (2010). Conveying trustworthiness to online consumers: Reactions to consensus, physical store presence, brand familiarity, and generalized suspicion. Journal of Retailing, 86(4), 322-335.
    13. Berry, Leonard L. and A. Parasuraman. (1991). Marketing Services: Competing Through Quality, New York: Free Press.
    14. Bhattacherjee, A., Limayem, M., & Cheung, C. M.K. (2012). User switching of information technology: A theoretical synthesis and empirical test. Information & Management, 40, 327-333
    15. Bizer, G. Y. (2004). Attitudes. Encyclopedia of Applied Psychology, 1.
    16. Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2001). Consumer behavior 9th.South-Western Thomas Learning. Mason, OH.
    17. Boudreau, M. C., Gefen, D., & Straub, D. W. (2001). Validation in information systems research: a state-of-the-art assessment. Mis Quarterly, 1-16.
    18. Bowen, D. E. (1986). Managing customers as human resources in service organizations. Human Resource Management (1986-1998), 25(3), 371.
    19. Brown, I., Cajee, Z., Davies, D. and Stroebel, S. (2003). Cell phone banking: predictors of adoption in South Africa – an exploratory study. International Journal of Information Management, Vol. 23 No. 5, pp. 381-394.
    20. Brown, T. J., Barry, T. E., Dacin, P. A., & Gunst, R. F. (2005). Spreading the word: Investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context. Journal of the Academy of Marketing Science, 33(2), 123-138.
    21. Burnham, T. A., Frels, J. K., and Mahajan, V. (2003). Consumer switching costs: a typology, antecedents, and consequences. Journal of the Academy of Marketing Science, 31(2) 109–126.
    22. Chen, C. (2013). Perceived risk, usage frequency of mobile banking services. Managing Service Quality, 23(5), 410-436.
    23. Chen, C. W. D., & Cheng, C. Y. J. (2009). Understanding consumer intention in online shopping: a respecification and validation of the DeLone and McLean model. Behaviour & Information Technology, 28(4), 335-345.
    24. Chetan Sharma Consulting (2013.1.2) 2013 Mobile Predictions Annual Survey. Retrieved from: http://www.chetansharma.com/blog/2013/01/02/2013-mobile-industry-predictions-survey/
    25. Cisco (2013.6.17), More mobile devices than people by the end of 2013 – is your business prepared?, available at: http://blogs.cisco.com/collaboration/more-mobile-devices-than-people-by-the-end-of-2013-is-your-business-prepared/ (accessed at March 21, 2014)
    26. CNNIC (2012). 29th Statistical survey report on the internet development in China. China Internet Network Information Center.
    27. ComScore Inc (2012), 2011 state of online and mobile banking, available at: www.comscore.com/ (accessed June 2012).
    28. Coursaris, C., & Hassanein, K. (2002). Understanding m-commerce: a consumer-centric model. Quarterly journal of electronic commerce, 3, 247-272.
    29. Cruz, P., L. B. F. Neto, P. Munoz-Gallego, and T. Laukkanen. (2010). Mobile banking rollout in emerging markets: Evidence from Brazil. International Journal of Bank Marketing, Vol. 28, No. 5: 342-371.
    30. Czepiel, J. A. (1990). Service encounters and service relationships: implications for research. Journal of business research, 20(1), 13-21.
    31. Dahlen, M. (2001). Banner advertisements through a new lens. Journal of Advertising Research, 41(4), 23-30.
    32. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    33. Dawar, N., & Parker, P. (1994). Marketing universals: Consumers` use of brand name, price, physical appearance, and retailer reputation as signals of product quality. The Journal of Marketing, 81-95.
    34. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information systems research, 3(1), 60-95.
    35. Delone, W. H., & Mclean, E. R. (2004). Measuring e-commerce success: Applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31-47.
    36. Erdem, T., Swait, J., & Valenzuela, A. (2006). The Cross-Cultural Aspects of Brands as Signals. Journal of Marketing, 41(1), 86-100.
    37. Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of marketing research, 382-388.
    38. Frow, P., Ngo, L. V., & Payne, A. (2014). Diagnosing the supplementary services model: Empirical validation, advancement and implementation. Journal of Marketing Management, 30(1-2), 138-171.
    39. Gartner (2012), Gartner identifies the top 10 strategic technologies for 2012, available at: www.gartner.com/newsroom/id/1826214 (accessed March 21, 2014).
    40. Gatesnotes(2015), Our Big Bet for the Future, available at http://www.gatesnotes.com/2015-annual-letter?WT.mc_id=01_21_2015_DO_com_domain_0_00&page=0&lang=en
    41. Gefen, D. (2002). Customer loyalty in e-commerce. Journal of the association for information systems, 3(1), 2.
    42. Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Communications of the Association for Information systems, 16(1), 5.
    43. Gefen, D., Karahanna, E. and Straub, D. (2003), Trust and TAM in online shopping: an integrated model, MIS Quarterly, Vol. 27, No. 1, pp. 51-90.
    44. Gefen, D., Straub, D., & Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the association for information systems, 4(1), 7.
    45. Ghiselli, E. E., Campbell, J. P., & Zedeck, S. (1981). Measurement Theory for the Behavioral Sciences: Origin & Evolution. WH Freeman & Company.
    46. González Mieres, C., María Díaz Martín, A., & Trespalacios Gutiérrez, J. A. (2006). Antecedents of the difference in perceived risk between store brands and national brands. European Journal of Marketing, 40(1/2), 61-82.

    47. Gu, J. C., Lee, S. C., & Suh, Y. H. (2009). Determinants of behavioral intention to mobile banking. Expert Systems with Applications, 36(9), 11605-11616.
    48. Guiltinan, J. P. (1989). A classification of switching costs with implications for relationship marketing. In AMA winter educators’ conference: Marketing theory and practice (pp. 216-20). Chicago: American Medical Association.
    49. Gwinner, K. P., Gremler, D. D., & Bitner, M. J. (1998). Relational benefits in services industries: the customer’s perspective. Journal of the academy of marketing science, 26(2), 101-114.
    50. Ha, K. H., Canedoli, A., Baur, A. W., & Bick, M. (2012). Mobile banking—insights on its increasing relevance and most common drivers of adoption. Electronic Markets, 22(4), 217-227.
    51. Hair, J. F. Black, WC, Babin, BJ, & Anderson, RE (2010). Multivariate data analysis, 7ed.
    52. Hair, J. F., Anderson, R. E., Tatham, R. L., & William, C. (1998). Multivariate data analysis.
    53. Hanafizadeh, P., Behboudi, M., Koshksaray, A. A., & Tabar, M. J. S. (2014). Mobile-banking adoption by Iranian bank clients. Telematics and Informatics, 31(1), 62-78.
    54. Hardesty, D. M., Carlson, J. P., & Bearden, W. (2002). Brand familiarity and invoice price effects on consumer evaluations: the moderating role of skepticism toward advertising. Journal of advertising, 31(2), 1-15.
    55. Hoehle, H., Scornavacca, E., & Huff, S. (2012). Three decades of research on consumer adoption and utilization of electronic banking channels: A literature analysis. Decision Support Systems, 54(1), 122-132.
    56. Hogg, Michael A. (1994). The Social Psychology of Group Cohesiveness, New York: Harvester Wheatsheaf.
    57. Hong, W., Thong, J.Y.L., Wong, W.M., and Tam, K.Y. (2001). Determinants of user acceptance of digital libraries: an empirical examination of individual differences and system characteristics. Journal of Management Information Systems, Vol. 18 No. 3, pp. 97-124.
    58. Huang, L. Y., & Hsieh, Y. J. (2012). Consumer electronics acceptance based on innovation attributes and switching costs: The case of e-book readers. Electronic Commerce Research and Applications, 11(3), 218-228.
    59. Ilie, V., Van Slyke, C., Green, G., & Hao, L. (2005). Gender differences in perceptions and use of communication technologies: A diffusion of innovation approach. Information Resources Management Journal, 18(3), 13.
    60. Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2000). Switching barriers and repurchase intentions in services. Journal of retailing, 76(2), 259-274.
    61. Kamins, M. A., & Marks, L. J. (1991). The perception of kosher as a third party certification claim in advertising for familiar and unfamiliar brands. Journal of the Academy of Marketing Science, 19(3), 177-185.
    62. Keller, K. L., Parameswaran, M. G., & Jacob, I. (2011). Strategic brand management: Building, measuring, and managing brand equity. Pearson Education India.
    63. Kent, R., & Allen, C. (1994). Competitive interference effects in consumer memory for advertising: The role of brand familiarity. The Journal of Marketing, 58(3), 97-105.
    64. Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision support systems, 44(2), 544-564.
    65. Kim, G., Shin, B., & Lee, H. G. (2009). Understanding Dynamics between Initial Trust and Usage Intentions of Mobile Banking. Information Systems Journal, 19(3), 283-311.
    66. Kim, H. W., Xu, Y., & Koh, J. (2004). A comparison of online trust building factors between potential customers and repeat customers. Journal of the Association for Information Systems, 5(10), 13.
    67. King, B. (2012). Bank 3.0: Why Banking Is No Longer Somewhere You Go But Something You Do. John Wiley & Sons.
    68. Kline, R. B. (2005). Principles and Practice of Structural Equation Modeling. New York, NY: Guilford.
    69. Koenig-Lewis, N., A. Palmer, and A. Moll. (2010). Predicting young consumers’ take up of mobile banking services. International Journal of Banking Marketing, Vol. 28, No. 5: 410-432.
    70. Laforet, S., & Li, X. (2005). Consumers` attitudes towards online and mobile banking in China. International journal of bank marketing, 23(5), 362-380.

    71. Laukkanen, T. (2007). Internet vs Mobile Banking: Comparing Customer Value Perceptions. Business Process Management Journal, 13(6), 788-797.
    72. Laukkanen, T., & Lauronen, J. (2005). Consumer Value Creation in Mobile Banking Services. International Journal of Mobile Communications, 3(4), 325-338.
    73. Lee, K. C., & Chung, N. (2009). Understanding Factors Affecting Trust in and Satisfaction with Mobile Banking in Korea: A Modified DeLone and McLean’s Model Perspective. Interacting with Computers, 21(5–6), 385-392.
    74. Liljander, V., & Strandvik, T. (1995). The nature of customer relationships in services. Advances in services marketing and management, 4(141), 67.
    75. Lin, H. F. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International journal of information management, 31(3), 252-260.
    76. Lovelock, C. (1995). Competing on service: technology and teamwork in supplementary services. Planning Review, 23(4), 32-47.
    77. Lovelock, C., & Wirtz, J. (2012). Services Marketing, 7/e: Pearson Education India.
    78. Luarn, P., & Lin, H.-H. (2005). Toward an Understanding of the Behavioral Intention to Use Mobile Banking. Computers in Human Behavior, 21(6), 873-891.
    79. Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining Multi-dimensional Trust and Multi-faceted Risk in Initial Acceptance of Emerging Technologies: An Empirical Study of Mobile Banking Services. Decision Support Systems, 49(2), 222-234.
    80. Mallat, N., Rossi, M., & Tuunainen, V. K. (2004). Mobile Banking Services. Communications of the ACM, 47(5), 42-46.
    81. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of management review, 20(3), 709-734.
    82. Meyer, T., Stobbe, A., Kaiser, S., & Mayer, T. (2010). Mobile banking is still not widespread but has become much more interesting. Deustche Bank Research. Digital Economy and Structural Change.
    83. Misner, I. R. (1994). The World`s Best Known Marketing Secrets (p. 41). Bard Press.
    84. Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
    85. Nepomuceno, M. V., Laroche, M., & Richard, M. O. (2014). How to reduce perceived risk when buying online: The interactions between intangibility, product knowledge, brand familiarity, privacy and security concerns. Journal of Retailing and Consumer Services, 21(4), 619-629.
    86. Ngai, E. W. T., & Gunasekaran, A. (2007). A Review for Mobile Commerce Research and Applications. Decision Support Systems, 43(1), 3-15.
    87. Nicolaou, A. I., & McKnight, D. H. (2006). Perceived information quality in data exchanges: Effects on risk, trust, and intention to use. Information Systems Research, 17(4), 332–351.
    88. Nunnally, J. C., & Bernstein, I. H. (1994). Psychological theory.
    89. Papies, D., & Clement, M. (2008). Adoption of new movie distribution services on the Internet. Journal of Media Economics, 21(3), 131–157.
    90. Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International journal of electronic commerce, 7(3), 101-134.
    91. Polites, G. L., and Karahanna, E. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS Quarterly, 36(1), 21-42.
    92. Price, L. L., & Arnould, E. J. (1999). Commercial friendships: service provider-client relationships in context. The Journal of Marketing, 38-56.
    93. Rechinhheld, F., & Sasser, W. (1990). Zero defections: Quality comes to service. Harvard Business Review, 68(5), 105-111.
    94. Richardson, P. S., Jain, A. K., & Dick, A. (1996). Household store brand proneness: a framework. Journal of Retailing, 72(2), 159-185.
    95. Riivari, J. (2005). Mobile banking: A powerful new marketing and CRM tool for financial services companies all over Europe. Journal of Financial Services Marketing, 10(1), 11-20.
    96. Riordan, C. M., & Griffeth, R. W. (1995). The opportunity for friendship in the workplace: An underexplored construct. Journal of business and psychology,10(2), 141-154.
    97. Rogers, E. M. (1995). Diffusion of Innovation (5th ed.). New York: Free Press.
    98. Rosen, E. (2001). The anatomy of buzz: how to create word-of-mouth marketing. The Cornell Hotel and Restaurant Administration Quarterly, 42(3), 7.
    99. Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216.
    100. Scornavacca, E. and H. Hoehle. (2007). Mobile banking in Germany: A strategic perspective. International Journal of Electronic Finance, Vol. 1, No. 3: 304-320.
    101. Shao Yeh, Y., & Li, Y. M. (2009). Building trust in m-commerce: contributions from quality and satisfaction. Online Information Review, 33(6), 1066-1086.
    102. Siau, K., & Shen, Z. (2003). Building Customer Trust in Mobile Commerce. Communications of the ACM, 46(4), 91-94.
    103. Singh, S., Srivastava, V., and R. K. Srivastava. (2010). Customer acceptance of mobile banking: A conceptual framework. SIES Journal of Management, Vol. 7, No. 1: 55-64.
    104. Sripalawat, J., M. Thongmak, and A. Ngramyarn, (2011). M-banking in metropolitan Bangkok and a comparison with other countries. The Journal of Computer Information Systems, Vol. 51, No. 3: 67-76.
    105. Straub, D. W. (1989). Validating Instruments in MIS Research. MIS Quarterly, 13(2), 147-169
    106. Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. The Communications of the Association for Information Systems, 13(1), 63.
    107. Suoranta, M. and M. Mattila. (2004). Mobile banking and consumer behavior: New insights into the diffusion pattern. Journal of Financial Services Marketing, Vol. 8, No. 4: 354-366.
    108. Trochim, W. M., & Donnelly, J. P. (2001). Research methods knowledge base.
    109. Tsai, M-C., Lee, W., & Wu, H-C. (2010). Determinants of RFID adoption intention: Evidence from Taiwanese retail chains. Information & Management, 47, 255-261.
    110. Turel, O., Serenko, A., & Bontis, N. (2010). User acceptance of hedonic digital artifacts: A theory of consumption values perspective. Information & Management, 47(1), 53-59.
    111. Turnbull, P. W., & Wilson, D. T. (1989). Developing and protecting profitable customer relationships. Industrial Marketing Management, 18(3), 233-238.
    112. Vance, A., Elie-Dit-Cosaque, C., & Straub, D. W. (2008). Examining trust in information technology artifacts: the effects of system quality and culture.Journal of Management Information Systems, 24(4), 73-100.
    113. Vasa, S. (2010). Mobile Money Study: A Baseline View January 2010. Data Innovation, Inc.
    114. Venkatesh, V., & Zhang, X. (2010). Unified theory of acceptance and use of technology: US vs. China. Journal of Global Information Technology Management, 13(1), 5-27.
    115. Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information and Management, 41(6), 747–762.
    116. Wessels, L., & Drennan, J. (2010). An Investigation of Consumer Acceptance of M-banking. International Journal of Bank Marketing, 28(7), 547-568.
    117. Westbrook, R. A. (1987). Product/consumption-based affective responses and postpurchase processes. Journal of marketing research, 258-270.
    118. William Jr, D. P., & McCarthy, E. J. (2002). Basic Marketing: Mandatory Student Package. Publisher: McGraw-Hill Higher Education.
    119. Yu, C. S. (2012). Factors Affecting Individuals to Adopt Mobile Banking: Empirical Evidence from the UTAUT Model. Journal of Electronic Commerce Research, 13(2), 104-121.
    120. Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1988). Communication and control processes in the delivery of service quality. The Journal of Marketing, 35-48.
    121. Zhou, T. (2011). An Empirical Examination of Initial Trust in Mobile Banking. Internet Research, 21(5), 527-540.
    122. Zhou, T. (2012a). Understanding users` initial trust in mobile banking: An elaboration likelihood perspective. Computers in Human Behavior, 28, 1518-1525.
    123. Zhou, T. (2012b). Examining mobile banking user adoption from the perspectives of trust and flow experience. Information Technology & Management, 13, 27-37.
    124. Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091.
    125. Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
    Description: 碩士
    國立政治大學
    企業管理研究所
    102363030
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102363030
    Data Type: thesis
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    File SizeFormat
    303001.pdf1281KbAdobe PDF2391View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback