English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50803139      Online Users : 758
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/77243
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/77243


    Title: 勝算比法在三維離散條件分配上的研究
    Odds Ratio Method on Three-Dimensional Discrete Conditional Distributions
    Authors: 鄭鴻輝
    Jheng, Hong Huei
    Contributors: 宋傳欽
    Song, Chwan Chin
    鄭鴻輝
    Jheng, Hong Huei
    Keywords: 條件機率矩陣
    相容
    勝算比
    近似聯合分配
    參考點
    最少點法
    conditional probability matrix
    compatibility
    odds ratio
    approximate joint distribution
    reference point
    minimum-points method
    Date: 2015
    Issue Date: 2015-08-03 13:31:03 (UTC+8)
    Abstract: 給定聯合分配,可以容易地導出對應的條件分配。反之,給定條件分配的資訊,是否能導出對應的聯合分配呢?例如根據O. Paul et al.(1963,1968)對造成心血管疾病因素之追蹤研究,可得出咖啡量、吸菸量及是否有心血管疾病三者間的條件機率模型資料,是否能找到對應的聯合機率模型,以便可以更深入地研究三者之關係,是一個重要的議題。在選定參考點下,Chen(2010)提出以勝算比法找條件密度函數相容的充要條件,以及在相容性成立時,如何求得聯合分配。在二維中,當兩正值條件機率矩陣不相容時,郭俊佑(2013)以幾何平均法修正勝算比矩陣,並導出近似聯合分配,同時利用幾何平均法之特性,提出最佳參考點之選擇法則。本研究以二維的勝算比法為基礎,探討三維離散的相容性問題,獲得下列幾項結果:一、證明了三個三維條件機率矩陣相容的充要條件就是兩兩相容。二、當三維條件機率矩陣不相容時,利用幾何平均法導出近似聯合分配。三、利用兩兩相容的充要條件,導出三維條件機率矩陣相容的充要條件,並證明該充要條件與Chen的結果一致。四、在幾何平均法下,提出最少點法,有效率地找出最佳參考點,以產生總誤差最小的近似聯合分配。五、設計出程式檢驗三維條件機率矩陣是否相容,並找出最佳參考點,同時比較最少點法與窮舉法之間效率的差異。
    Given a joint distribution, we can easily derive the corresponding fully conditional distributions. Conversely, given fully conditional distributions, can we find out the corresponding joint distribution? For example, according to a longitudinal study of coronary heart disease risk factors by O. Paul et al. (1963, 1968), we obtain conditional probability model data among coffee intake, the number of cigarettes smoked and whether he/she has coronary heart disease or not. Whether we can find out the corresponding joint distribution is an important issue as the joint distribution may be used to do further analyses. Chen (2010) used odds ratio method to find a necessary and sufficient condition for their compatibility and also gave the corresponding joint distribution for compatible situations. When two positive discrete conditional distributions in two dimensions are incompatible, Kuo (2013) used a geometric mean method to modify odds ratio matrices and derived an approximate joint distribution. Kuo also provided a rule to find the best reference point when the geometric mean method is used. In this research, based on odds ratio method in two dimensions, we discuss their compatibility problems and obtain the following results on three-dimensional discrete cases. Firstly, we prove that a necessary and sufficient condition for the compatibility of three conditional probability matrices in three dimensions is pairwise compatible. Secondly, we extend Kuo’s method on two-dimensional cases to derive three-dimensional approximate joint distributions for incompatible situations. Thirdly, we derive a necessary and sufficient condition for the compatibility of three conditional probability matrices in three dimensions in terms of pairwise compatibility and also prove that this condition is consistent with Chen’s results. Fourthly, we provide a minimum-points method to efficiently find the best reference point and yield an approximate joint distribution such that total error is the smallest. Fifthly, we design a computer program to run three-dimensional discrete conditional probability matrices problems for compatibility and also compare the efficiency between minimum-points method and exhausting method.
    Reference: Arnold, Barry C. and Press, S. James (1989), ‘‘Compatible conditional distributions”, Journal of the American Statistical Association 84 (405), 152-156.

    Chen, Hua Yun (2010), “Compatibility of conditionally specified models”, Statistics and Probability Letters 80 (7-8), 670-677.

    Paul, O., Lepper, M. H., Phelan, W. H., Dupertius, G. W., MacMillan, A., McKean, H., and Park, H. (1963), “A longitudinal study of coronary heart disease”, Circulation 28 (20), 20-31.

    Paul, O., MacMillan, A., McKean, H., and Park, H. (1968), “Sucrose intake and coronary heart disease”, Lancet 2 (7577), 1049-1051.

    邓薇(2011),MATLAB函数速查手册(修订版),北京:人民邮电出版社。

    張智星(2000),MATLAB程式設計與應用,台北:清蔚科技。

    郭俊佑(2013),修正條件分配勝率矩陣時最佳參考點之選取方法,國立政治大學應用數學系碩士論文。
    Description: 碩士
    國立政治大學
    應用數學研究所
    101751004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1017510041
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    004101.pdf9395KbAdobe PDF2228View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback