English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50803119      Online Users : 767
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 會議論文 >  Item 140.119/76496
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/76496


    Title: Trust region Newton methods for large-scale logistic regression
    Authors: Lin, C.-J.;Weng, Ruby Chiu-Hsing;Keerthi, S.S.
    翁久幸
    Contributors: 統計系
    Keywords: Approximation algorithms;Classification (of information);Convergence of numerical methods;Mathematical models;Natural language processing systems;Regression analysis;Logistic regression;Quasi Newton approach;Newton-Raphson method
    Date: 2007
    Issue Date: 2015-07-13 15:16:50 (UTC+8)
    Abstract: Large-scale logistic regression arises in many applications such as document classification and natural language processing. In this paper, we apply a trust region Newton method to maximize the log-likelihood of the logistic regression model. The proposed method uses only approximate Newton steps in the beginning, but achieves fast convergence in the end. Experiments show that it is faster than the commonly used quasi Newton approach for logistic regression. We also compare it with linear SVM implementations.
    Relation: ACM International Conference Proceeding Series,Volume 227, Pages 561-568
    24th International Conference on Machine Learning, ICML 2007,20 June 2007 through 24 June 2007,Corvalis, OR
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1145/1273496.1273567
    DOI: 10.1145/1273496.1273567
    Appears in Collections:[統計學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2903View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback