Reference: | 中文文獻
[1]陳國榮、葉仕國(1999) 以Hull and White利率模型評價可轉換公司債
[2]曾右仲(2009) 利用三因子樹狀模型評價可轉換公司債
[3]劉育廷(2010) 結合結構式模型及縮減式模型評價可轉換公司債
[4]倪健翔(2013) 利用結構式模型來評價可轉換公司債
英文文獻
[1] Black, F. and J.C. Cox (1976) Valuing corporate securities: Some effects of bond indenture provisions, Journal of Finance 31, 351-367.
[2] Briys, E., and De Varenne, F.(1997)“Valuing Risky Fixed Rate Debt:An Extension,”Journal of Finance and Quantitative Analysis, 32, 239-248,
[3] Chambers, D.R. and Q. Lu. (2007): “A Tree Model for Pricing Convertible Bonds with Equity, Interest Rate, and Default Risk,” The Journal of Derivatives, 4 (Summer 2007), 25–46.
[4] Dai, T. S. “Efficient Option Pricing on Stocks Paying Discrete or Path-Dependent Dividends with the Stair Tree. ” Quantitative Finance, Volume 9, Issue 7 October 2009 , pages 827 – 838
[5] Damiano Brigo and Fabio Mercurio(2006): “Interest rate models: theory and practice, Springer Verlag New”
[6] Hull, J., and A. White (1996)“Using Hull-White Interest-Rate Trees,” Journal of derivatives, 3, 26-36
[7] Hull, J.(2006) Options, Futures, and Other Derivatives 6Th. Englewood Cliffs, NJ Prentice-Hall.
[8] Hung, M.W. and J.Y. Wang. (2002) “Pricing Convertible Bond Subject to Default Risk.” Journal of derivative, pp. 75-87.
[9] Jarrow, R. A. and S. M. Turnbull (1995) “Pricing derivatives on financial securities subject to credit risk.” Journal of Finance 3, 93-115.
[10] Kunitomo, N. and Ikeda, M. (1991) “Pricing Option with Curve Boundaries.”, working paper
[11] Merton, R.C. (1974) “On the Pricing of Corporate Debt: The Risk Structure of interest.”Journal of Finance, 449-470
[12] Thomas S. Y. Ho and Sang-Bin Lee(1986):Term Structure Movements and Pricing Interest Rate Contingent Claims. The Journal of Finance, Vol. 41, No. 5. (Dec., 1986), pp. 1011-1029.
[13] Das & Hanouna (2009) “Implied recovery”, 5-6. |