English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50812810      Online Users : 758
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/76428
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/76428


    Title: Copula模型在信用連結債券的評價與實證分析
    Valuation and Empirical Analysis of Credit Linked Notes Using Copula Models
    Authors: 林彥儒
    Lin, Yen Ju
    Contributors: 廖四郎
    林士貴

    Liao, Szu Lang
    Lin, Shih Kuei

    林彥儒
    Lin, Yen Ju
    Keywords: 信用風險
    Copula Model
    Factor Copula Model
    信用連結債券
    Credit Risk
    Copula Model
    Factor Copula Model
    Credit-Linked Notes
    Date: 2015
    Issue Date: 2015-07-13 11:08:27 (UTC+8)
    Abstract: 信用連結債券的價值主要取決於所連結資產池內的資產違約狀況,使得原始信用風險債券在到期時的本金償付受到其他債券的信用風險影響,因此如何準確且客觀的估計資產池內違約機率便一個很重要的課題,而過去文獻常以給定參數的方式,並且假設資產間的違約狀況彼此獨立下進行評價,對於聯合違約機率的捕捉並不明顯,因此本文延伸Factor Copula模型,建立信用連結債券之評價模型,該模型考慮了資產間的違約相關程度,以期達到符合市場的效果,同時配合統計之因素分析法,試圖找出影響商品價格背後的市場因子。
    本研究利用延伸的評價模型以及Copula法,對實際商品做一訂價探討,結果發現,不管是使用樣本內或樣本外的資料去評價時,本研究的評價模型表現都優於Copula法,表示說評價時額外加入市場因子的考慮,對於評價是有正向的幫助;而在因子選取方面,我們選取18項因子後,經由因素分析共可萃取出三大類因素,藉由觀察期望價格與市場報價的均方根誤差,發現國家因素以及產業因素均對於商品價格有所影響,而全球因素對於商品不但沒有顯著影響,同時加入後還會使得計算出的商品期望價格更偏離市場報價,代表說並不是盲目的加入許多因子就能使得模型計算出的價格貼近市場報價,則是要視加入的因子對於資產的影響程度而定。
    對於後續研究的建議:由於本研究的實證中存在一些假設,使得評價過程中並不完全符合現實市場現況,若能得到市場上的真實數據,或是改以隨機的方式來計算,相信結果會更貼近市場報價;同時,藉由選取不同的因子來評價,希望能找出國家因素、產業因素以外的其他影響因子,可助於我們更了解此項商品背後的影響因素,使得投資人能藉由觀察市場因子數據來判斷商品未來價格走勢。
    Value of the credit-linked notes depend on the pool of assets whether default or not, so the promised payoff of credit-linked notes is affected by other risky underlying assets. Therefore, how to estimate the probability of default asset pool accurately and objectively will be a very important issue. In the past literature, researchers usually use given parameters, and assume assets probability of default are independent from each other under valuation. Furthermore, it is not obvious to capture the joint probability of default. Thus, this article extends the Factor Copula Model to provide a new methodology of pricing credit-linked notes, which consider the default correlation between the extent of assets in order to achieve result in line with market and with Factor Analysis method added, trying to figure out the impact of commodity price factor behind the market.
    In the empirical analysis, pricing the actual commodity issued by LB Baden-Wuerttemberg using extend model and Copula model, we found that no matter choose in-the-sample or out-the-sample data to valuation, the models in this article are superior to Copula model by compare the root-mean-square deviation(RMSE). It means add the market factors into our valuation is beneficial. In terms of selection factors, we select eighteen factors prepared by Morgan Stanley Capital International, and three categories of factors may be extracted from Factor Analysis method. By observing RMSE, both national factors and industry factors will influence on the commodity, but world factors not only did not significantly impact on the commodity, but also add it to calculate the expected price further from the market price. Representative said not blind join the many factors can make the model to calculate the price close to the market price, it is a factor depending on the degree of influence of the added asset.
    For the suggestion of future research. The fact that the presence of empirical assumptions in this study, result in the evaluation process is not entirely realistic to market situation. We suggest to get the real data on the market or use random way to calculate, we believe that the outcome will be closer to the market price. Meanwhile, by selecting different factors to evaluate, trying to discover further factors which significantly impact on the commodity; it will help us better to understand the factors behind the commodity, so investors can predict commodity future prices by observing the market data.
    Reference: 中文部分
    [1] 朱婉寧,信用連結債券評價─Factor Copula模型應用,國立政治大學金融研究所碩士論文,民國102年。
    [2] 林淳瑜,信用及利率衍生性商品之評價與分析--以信用連結票券及利率交換為例,國立政治大學金融研究所碩士論文,民國94年。
    [3] 段登宇,擔保債權憑證CDO之訂價與分析─單因子模型與機率水桶法之應用,世新大學財務金融學系碩士論文,民國97年。
    [4] 張瑞珍,信用連結票券之評價,國立暨南國際大學財務金融學系碩士論文,民國93年。
    [5] 蔡順吉,信用連結債券之評價,國立高雄第一科技大學金融營運系碩士論文,民國94年。
    [6] 潘雅慧,新巴賽爾資本協定及信用風險模型化之分析,中央銀行季刊第二十四卷第二期,民國91年。
    英文部分
    [1] GREGORY, Jon; LAURENT, Jean-Paul. In the core of correlation. RISK-LONDON-RISK MAGAZINE LIMITED-, 2004, 17: 87-91
    [2] HULL, John C.; WHITE, Alan D. Valuation of a CDO and an n-th to default CDS without Monte Carlo simulation. The Journal of Derivatives, 2004, 12.2: 8-23.
    [3] LEE, Yu-Sung. Pricing Counterparty Credit Risk for Synthetic CDO Tranches. 2011, 1-31.
    [4] WU, Po-Cheng. Applying a factor copula to value basket credit linked notes with issuer default risk. Finance Research Letters, 2010, 7.3: 178-183.
    [5] RATHGEBER, Andreas; WANG, Yun. Market Pricing of Credit Linked Notes: The Case of Retail Structured Products in Germany. In: Annual Meeting Paper. EFMA. 2010.
    [6] BURTSCHELL, Xavier; GREGORY, Jon; LAURENT, Jean-Paul. A comparative analysis of CDO pricing models. 2005.
    Description: 碩士
    國立政治大學
    金融研究所
    102352022
    103
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102352022
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    202201.pdf19807KbAdobe PDF2269View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback