Reference: | Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 10(3), 186-198. doi: 10.1038/nrn2575 Chou, E. (2014). Computed Data-geometry based Supervised and Semi-supervised Learning in High Dimensional Data. ProQuest, UMI Dissertations Publishing. Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., & Maravilla, K. (2002). Hierarchical clustering to measure connectivity in fMRI resting-state data. Magnetic Resonance Imaging, 20(4), 305-317. doi: 10.1016/s0730-725x(02)00503-9 Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi: 10.1007/bf00994018 Filzmoser, P., Baumgartner, R., & Moser, E. (1999). A hierarchical clustering method for analyzing functional MR images. Magnetic Resonance Imaging, 17(6), 817-826. doi: 10.1016/s0730-725x(99)00014-4 Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179-188. Fix, E., & Hodges Jr, J. L. (1951). Discriminatory analysis-nonparametric discrimination: consistency properties: DTIC Document. Fushing, H., Wang, H., Vanderwaal, K., McCowan, B., & Koehl, P. (2013). Multi-scale clustering by building a robust and self correcting ultrametric topology on data points. PLoS One, 8(2), e56259. doi: 10.1371/journal.pone.0056259 Hastie, Tibshirani, & Friedman. (2009). The Elements of Statistical Learning (2 ed.). New York: Springer-Verlag. Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Bach, F., & Thirion, B. (2011). Multi-scale mining of fMRI data with hierarchical structured sparsity. Paper presented at the Pattern Recognition in NeuroImaging (PRNI), 2011 International Workshop on. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., . . . Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89(12), 5675-5679. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage, 53(1), 103-118. doi: 10.1016/j.neuroimage.2010.05.051 Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. Neuroimage, 45(1 Suppl), S199-209. doi: 10.1016/j.neuroimage.2008.11.007 Rissman, J., Gazzaley, A., & D`Esposito, M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage, 23(2), 752-763. doi: 10.1016/j.neuroimage.2004.06.035 Solomon, M., Ozonoff, S. J., Cummings, N., & Carter, C. S. (2008). Cognitive control in autism spectrum disorders. International Journal of Developmental Neuroscience, 26(2), 239-247. Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci, 1, 801-804. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., . . . Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289. Wang, H., Chen, C., & Fushing, H. (2012). Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders. PLoS One, 7(10), e45502. doi: 10.1371/journal.pone.0045502 Wang, X., Hutchinson, R. A., & Mitchell, T. M. (2003). Training fMRI classifiers to discriminate cognitive states across multiple subjects. Paper presented at the Advances in neural information processing systems. |