政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/76174
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 50980016      在线人数 : 894
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/76174


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/76174


    题名: 總體經濟變數對於台灣股票市場波動程度之可預測性
    Economic Variables and the Predictability of Stock Volatility in Taiwan
    作者: 吳湘韻
    贡献者: 趙世偉
    吳湘韻
    关键词: 股票
    波動度
    預測
    總體經濟
    stock
    volatility
    predict
    Macroeconomic
    日期: 2014
    上传时间: 2015-07-01 14:45:46 (UTC+8)
    摘要: 本文研究主旨在討論總體經濟變數是否可以作為台灣股價指數波動度的解釋因子,本文使用線性預測模式,在樣本內與樣本外分析架構下,討論台灣加權股價指數的報酬率波動度是否在加入總體經濟變數後,可以提升模型解釋能力,並且考慮國內外文獻中有討論的財務變數及外匯變數進入模型,觀察台灣實證經驗是否與成熟市場的美國經驗一致。
    在實證結果上,與Paye(2012)使用美國S&P500 指數資料所得出的結果相似,無顯著證據顯示將總體經濟變數納入模型可以改善預測能力,單一變數中,僅有週轉率變數與利率變數的預測能力較佳。此外,個別模型預估值的線性組合方法較能改善模型預測能力,顯示多方訊息的彙整下,含有豐富的市場資訊,可以有效預測股價市場的波動。
    Aggregate stock volatility is changing anytime. The main topic of this thesis tests whether it is possible to improve the stock market volatility forecasts by adding the macroeconomics variables into the linear model. The paper uses the linear predictable model to construct the in-sample and out-of-sample analysis forecast model to test whether the model considering macroeconomics variables outperforms the benchmark model. It is difficult to find the empirical evidence that forecasts on conditioning an macroeconomic variable outperform than the volatility lagged information. Only the financial variables which are Taiwan stock monthly turnover rate and credit variables have improved the model forecast. The most successful approaches involve simple combination of individual forecasts.
    參考文獻: Andersen T. G., Bollerslev T., Diebold F. X., and Ebens H., (2001). The Distrbution of Stock Return Volatitlity. Journal of Financial Economics,61,43-76.
    Campbell J. Y., and Samuel B. T., (2008). Predicting the Excess Stock Returns Out of Sample : Can any Thing Beat The Historical Average?. The Review of Financial Studies,21(4),1509-1531.
    Christiansen C., Schmeling M., and Schrimpf A., (2012). A Comprehensive Look at Financial Volatility Prediction by Economic Variables. Journal of Applied Econometrics. Volume 27 Issue 6,956-977.
    Clark T. E., and West K. D., (2007). Approximately Normal Tests for Equal Predictive Accuracy in Nested Models. Journal of Econometrics,138,291-311.
    Davis, N., and Kutan A. M., (2003). Inflation and Output as Predictors of Stock Returns and Volatility: International Evidence. Applied Financial Economics,13,693-700.
    Dickey, D. A., and Fuller, W. A., (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association,74 (366),427-431.
    Fortune P., (1989). An Assessment of Financial Market Volitility: Bills, Bond and Stocks. New England Economic Review,13-28.
    Giacomini R., and White H., (2006). Test of Conditional Predictive Ability. Econometrica,74,1545-1578.
    Goyal, A., Welch, I., (2008). A Comprehensive Look at The Empirical Performance of the Equity Premium Prediction. Review of Financial Studies,21,1455-1508.
    Officer R. R., (1973). The Variability of The Market Factor of New York Stock Change.Journal of Business,46,434-453.
    Paye B. S., (2012). Deja Vol:Preditive Regressions for Aggregate Stock Market Volatility Using Macroeconomics Variables. Journal of Financial Economics,106,527-546.
    Phillips, P. C. B., and Perron, P.,(1988). Testing for a Unit Root in Time Series Regression. Biometrika,75,335-346.
    Schwert G. W., (1989). Why Does Stock Market Volatility Change Over Time?. The Jornal of Finance,44,1115-1153.
    Sill D. K., (1993). Predicting Stock-Market Volatility. Business Review-Federal Reserve Bank of Philadlephia,15-27.
    Stambaugh R. F., (1999). Predictive Regressions. Journal of Financial Economics,54,375-421.
    Rapach D. E., Strauss J. K., and Zhou G., (2010). Out of Sample Equity Premium Prediction: Combination Forecasts and Links to The Real Economy. Review of Financial Studies,23,821-862.
    Rossi B., and Inoue A., (2012). Out-of-Sample Forecast Tests Robust to the Choice of Window Size. Journal of Business & Economic Statistics,30,432-453.
    李秀雯(1999)。股票市場波動性與總體經濟波動性及市場交易量之關係。未出版之碩士論文,私立淡江大學,財務金融學系。
    倪衍森與徐光耀(1999)。臺灣股市波動性的傳遞性研究。淡江人文社會學刊,171-201。
    郭迺鋒、李麗華、柯佩璇、張佩惠、謝雨豆(2009)。台灣股票市場報酬率波動來源之探討:分量迴歸分析。2009 行為財務學暨新興市場理論與實證研討會。
    陳功業(1999)。台灣股票市場波動性之研究。未出版之碩士論文,國立政治大學,國際貿易學系研究所。
    許文成(1996)。台灣股票市場波動性之衡量及其影響因子之探討。未出版之碩士論文,國立中山大學,財務管理研究所。
    黃德芬(1994)。臺灣股票市場波動性與基本面因素及市場交易因素之關係之實證研究。未出版之碩士論文,國立台灣大學,財務金融學系。
    黃勁豪(2001)。台灣股票市場波動性與總體經濟波動性關係之研究。未出版之碩士論文,私立東海大學,企業管理學系。
    潘勝昱(2012)。總體經濟變數對台灣股價波動性之長、短期影響-以CARR 模型分析。未出版之碩士論文,國立清華大學,經濟學系。
    描述: 碩士
    國立政治大學
    金融研究所
    102352017
    103
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0102352017
    数据类型: thesis
    显示于类别:[金融學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    201701.pdf931KbAdobe PDF2658检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈