Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/76166
|
Title: | 網站體驗之沉浸經驗與腦波分析 Flow Experience and Electroencephalography Analysis of Websites Usage |
Authors: | 陳思帆 |
Contributors: | 梁定澎 Liang, Ting Peng 陳思帆 |
Keywords: | 網站品質 沉浸 滿意度 腦波 神經資訊系統 website quality flow satisfaction EEG neurological information systems |
Date: | 2014 |
Issue Date: | 2015-07-01 14:44:09 (UTC+8) |
Abstract: | 在電子商務網站上,網站設計的品質是影響使用者體驗和滿意度的主要原因。 在過去許多現有的文獻已證實他們之間的關係。不過,大部分研究則是透過問卷調查法了解用戶的反應,也就是說用戶回應有可能不準確並且存在著主觀的共同方法偏誤。而近年來,隨著腦神經科學方法的進步,利用神經科學設備去收集使用者身理資訊在社會科學和資訊系統領域已越來越受到關注。因此有趣的是,比較行為和腦神經研究結果,可以讓我們去了解是否這個新方法會幫助我們洞察網站設計效果。 基於上述目的,本研究設計了一個在台灣和中國現有的網路購物網站的現場實驗。本研究利用行為和神經科學方法去收集沉浸體驗和使用者滿意度的資料。收集腦波數據的特殊儀器是單點腦電圖(EEG),它被用於測量專注度和放鬆度。在本研究模型包括五個主要的網站設計元素(方便,美感,內容,互動性和客製化)做為自變量,沉浸經驗作為中介變量,使用者滿意度作為因變量。行為研究結果發現所有網站設計元素五個設計因素有顯著影響的沉浸體驗、沉浸經驗有顯著正向影響使用者滿意度。然而在神經科學的研究則有不同的發現,網站設計元素僅有方便,內容和客製化對沉浸經驗有正向的顯著影響。雖然沉浸經驗(由專注質和放鬆來衡量)對使用者滿意度的影響仍然存在,但是總體變異被解釋的比例值則較低(從0.56降低到0.10)。本研究認為有兩種可能的解釋:第一種是,我們所使用的腦波測量可能無法像問卷調查可以完全涵括到到整體沉浸經驗。另外可能的解釋是,先前的研究關於沉浸體驗和使用者滿意度可能在分析資料時忽略了潛在的共同方法偏差問題。 另外為了解不同地區網站設計差異,我們分析台灣大陸地區網站資料,行為研究結果發現台灣購物網站設計元素(方便、互動性、客製化)顯著影響的沉浸體驗、而大陸購物網站則是在內容、美感、客製化構面有顯著影響的沉浸體驗,兩者沉浸經驗對使用者滿意度的影響都存在。詢問受測者實際體驗經驗歸納出網站設計特性與行為研究結果相呼應。研究發現台灣一般購物網站具有反應時間快、人性化介面設計、好用搜尋和商品推薦功能特性,業者可以豐富商品內容、改進網站美感提升顧客網站體驗經驗。大陸購物網站具有商品內容豐富、商品平價大眾化、優良推薦功能、界面分類清楚好操作、網站圖片大小適中,配色和文字令人感到舒服等特性,業者可以改進網站反應時間、將網站採用繁體文字、或是提供台灣族群熟悉的網站版型方便顧客與網站互動。 The quality of website design is a main factor that affects user experience and satisfaction with an e-commerce site. This has been confirmed by many existing literature. However, most of these studies are based on user response through questionnaire surveys. It is well-known that user responses are potentially inaccurate and are subjective to the common method bias. Recently, neuroscience method that takes advantage of neuro-scientific equipment to collect psychophysiological evidence has gained much attention in social sciences and information systems. Therefore, it is interesting to compare our findings from behavioral and neuroscience studies to see whether this new method may provide insights into our understanding of website design effect. With the above purpose in mind, this study designed a field experiment on existing e-tailing websites in Taiwan and China. Both behavioral and neuroscience methods were applied to collect data about their flow experience and user satisfaction. The particular instrument for collecting brain wave data was a one-point electro-encephalogram (EEG), which is useful for measuring attention and relaxation. Our research model includes five main website design factors (convenience, aesthetics, content, interactivity and customization) as independent variables, flow experience as a mediator, and user satisfaction as the dependent variable. Our results indicate that all five design factors had significant impact on the flow experience and the flow experience had significant positive effect on user satisfaction in our behavior study. Our neuroscience study, however, shows different findings: only convenience, content, and customization had positive impact on the flow experience. Although the effect of flow experience (measured by attention and relaxation) on user satisfaction still exist, but the R-square value is much lower (reduced from 0.56 to 0.10). We argue that there are two possible interpretations: one is that the measurement we used may not be able to capture the full flow experience as a questionnaire could do. Another alerting explanation is that previous research on flow experience and user satisfaction may have overlooked the potential common method bias issue in analyzing their data. In order to understand the difference of website design in Taiwan and China, we analysis these data. Our behavioral study shows that Taiwan online shopping design factors( convenience、interactive、customization) had significant impact on the flow experience. And China online shopping design factors (content、aesthetic、customization) had significant impact on the flow experience. Both regions data shows that the flow experience had significant positive effect on user satisfaction.The behavior study result is consistent with the website design features that inquire about users shopping experience. This study found Taiwan shopping sites have these features that including quickly response time、user-friendly interface design、 easy to search and good product recommendation function. Managers can consider enriching commodity content and improving website aesthetic feeling, in order to improve customer website experience. China shopping sites have these features that including abundant commodity、inexpensive merchandise、excellent recommendation function、clear interface classification、 appropriate image size、comfortable colors and character. Managers can improved site response time、use traditional text or provide Taiwan user familiar site type to facilitate customer interaction with website. |
Reference: | (一) 英文文獻 Anderson, E. W., Fornell, C., & Lehmann, D. R. (1994). Customer satisfaction, market share, and profitability: Findings from Sweden. Journal of Marketing, 58(3), 53-66. Berger H. (1929). “Über das Elektrenkephalogramm des Menschen (On the EEG in European Archives of Psychiatry and humans),” Journal of Clinical `euroscience , Vol. 87, No. 1, pp527-570. Cadotte, E. R., Woodruff, R. B., & Jenkins, R.L. (1987). Expectations and norms in models of consumer satisfaction. Journal of Marketing Research, 24(3), 305-314. Carlson, J., & O’Cass, A. (2011). Creating commercially compelling website-service encounters: an examination of the effect of website-service interface performance components on flow experiences. Electronic Markets, 21(4), 237-253. Cecotti, H. (2011). Spelling with non-invasive Brain–Computer Interfaces–Current and future trends. Journal of Physiology-Paris, 105(1), 106-114. Chang, H. H., & Chen, S. W. (2009). Consumer perception of interface quality, security, and loyalty in electronic commerce. Information & Management, 46(7), 411-417. Chen, H., Wigand, R. T., & Nilan, M. S. (1999). Optimal experience of web activities. Computers in human behavior, 15(5), 585-608. Cho, O. H., Kim, J. Y., & Lee, W. H. (2013). Implement of weather simulation system using EEG for immersion of game play. Churchill, G. A. Jr., & Surprenant, C. (1982). An investigation into the determinants of customer satisfaction. Journal of Marketing Research, 19(4), 491-504. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Collins. Csikszentmihalyi, M. Beyond Boredom and Anxiety. (1975). Josey–Bass, San Francisco. Ellis, G. D., Voelkl, J. E., & Morris, C. (1994). Measurement and analysis issues with explanation of variance in daily experience using the flow model.Journal of Leisure Research. Ethier, J., Hadaya, P., Talbot, J. and Cadieux, J. (2006), “B2C web site quality and emotions during online shopping episodes: an empirical study”, Information & Management, Vol. 43 No. 5,pp. 627-639. Fan, Q., Lee, J. Y., & Kim, J. I. (2013). The impact of web site quality on flow-related online shopping behaviors in C2C e-marketplaces: A cross-national study. Managing Service Quality, 23(5), 364-387. Fassnacht, M., & Koese, I. (2006). Quality of electronic services conceptualizing and testing a hierarchical model. Journal of service research,9(1), 19-37. Finke, A., Lenhardt, A., & Ritter, H. (2009). The MindGame: a P300-based brain–computer interface game. Neural Networks, 22(9), 1329-1333. Gao, L., & Bai, X. (2014). Online consumer behaviour and its relationship to website atmospheric induced flow: Insights into online travel agencies in China.Journal of Retailing and Consumer Services. Ghani, J. A., & Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human—computer interaction. The Journal of psychology, 128(4), 381-391. Ghani, J. A., Supnick, R., & Rooney, P. (1991, January). The Experience Of Flow In Computer-Mediated And In Face-To-Face Groups. In ICIS (Vol. 91, pp. 229-237). Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: a test of alternative models. Information Systems Journal, 19(4), 369-390. Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis; a global perspective (ed.): Pearson Education Inc. New Jersey, USA, 5. Hausman, A.V. and Siekpe, J.S. (2009), “The effect of web interface features on consumer online purchase intentions”, Journal of Business Research, Vol. 62 No. 1, pp. 5-13. Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3). Hoffman, D. L., & Novak, T. P. (2009). Flow online: lessons learned and future prospects. Journal of Interactive Marketing, 23(1), 23-34. Hoffman, D. L., Novak, T. P., & Peralta, M. (1999). Building consumer trust online. Communications of the ACM, 42(4), 80-85. Hoffmann, R., Kriele, A., Obloh, H., Tokuda, N., Smirnov, W., Yang, N., & Nebel, C. E. (2011). The creation of a biomimetic interface between boron-doped diamond and immobilized proteins. Biomaterials, 32(30), 7325-7332. Hsu, C. L., Chang, K. C., & Chen, M. C. (2012). The impact of website quality on customer satisfaction and purchase intention: perceived playfulness and perceived flow as mediators. Information Systems and e-Business Management, 10(4), 549-570. Islam, H. (2009). Effects of website interactivity on online retail shopping behavior. In Value Creation in e-Business Management (pp. 131-142). Springer Berlin Heidelberg. Johnson, D., & Wiles, J. (2003). Effective affective user interface design in games. Ergonomics, 46(13-14), 1332-1345. Keller, J. M. (1983). Motivational design of instruction. Instructional design theories and models: An overview of their current status, 1, 383-434. Kober, S. E., & Neuper, C. (2011). Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. International Journal of Psychophysiology, 79(3), 347-355. Kotler, P., & Armstrong, G. (2002). Principles of marketing, 9th Ed., New Jersey: Prentice-Hall International, Inc. Koufaris, M. (2002), “Applying the technology acceptance model and flow theory to online consumer behavior”, Information Systems Research, Vol. 13 No. 2, pp. 205-223. Ladhari, R. (2010). Developing e-service quality scales: A literature review.Journal of Retailing and Consumer Services, 17(6), 464-477. Lee, K.C., Kang, I.W. and McKnight, D.H. (2007), “Transfer from offline trust to key online perceptions: an empirical study”, IEEE Transactions on Engineering Management, Vol. 54 No. 4, pp. 729-741. Mano, H., & Oliver, R. L. (1993). Assessing the dimensionality and structure of the consumption experience: Evaluation, feeling and satisfaction. Journal of Consumer Research, 20(3), 451-466. Mansourian, Y. (2006). Adoption of grounded theory in LIS research. New Library World, 107(9/10), 386-402. Mugler, E. M., Ruf, C. A., Halder, S., Bensch, M., & Kubler, A. (2010). Design and implementation of a P300-based brain-computer interface for controlling an internet browser. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 18(6), 599-609. NeuroSky Inc. (2009). NeuroSky Mindset Instruction Manual. 6-8. Noachtar, S., Binnie, C., Ebersole, J., Mauguiere, F., Sakamoto, A., & Westmoreland, B. (1998). A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. The International Federation of Clinical Neurophysiology.Electroencephalography and clinical neurophysiology. Supplement, 52, 21-41. Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. Basic books. Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing science, 19(1), 22-42. O`Cass, A., & Carlson, J. (2010). Examining the effects of website-induced flow in professional sporting team websites. Internet Research, 20(2), 115-134. Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17, 460-469. Ostrom, A., & Iacobucci, D. (1995). Customer trade-offs and the evaluation of service. Journal of Marketing, 59(1), 17-28. Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of management, 12(4), 531-544. Rebolledo-Mendez, G., & De Freitas, S. (2008). Attention modeling using inputs from a Brain Computer Interface and user-generated data in Second Life. In The Tenth International Conference on Multimodal Interfaces (ICMI 2008), Crete, Greece Rebolledo-Mendez, G., & De Freitas, S. (2008). Attention modeling using inputs from a Brain Computer Interface and user-generated data in Second Life. In The Tenth International Conference on Multimodal Interfaces (ICMI 2008), Crete, Greece. Rong, W. J., & Min, Y. S. (2005, July). The effects of learning style and flow experience on the effectiveness of e-learning. In Advanced Learning Technologies, 2005. ICALT 2005. Fifth IEEE International Conference on (pp. 802-805). IEEE. Trevino, L. and Webster, J., 1992, “Flow in computer-mediated communication”, Communication Research, Vol. 19(5), pp. 539-573. Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in human behavior, 9(4), 411-426. Westbrook, R. A. (1980). A rating scale for measuring product/service satisfaction. The Journal of Marketing, 68-72. Williamson, J., Murray-Smith, R., Blankertz, B., Krauledat, M., & Müller, K. R. (2009). Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. International Journal of Human-Computer Studies,67(10), 827-841. Wu, C. H., Liu, C. J., & Tzeng, Y. L. (2011). Brain Wave Analysis in Optimal Color Allocation for Children’s Electronic Book Design. environment, 1(7), 10. Yoo, B., & Donthu, N. (2001). Developing a scale to measure the perceived quality of an Internet shopping site (SITEQUAL). Quarterly Journal of Electronic Commerce, 2(1), 31-45. Zhou, T. (2013). Understanding the effect of flow on user adoption of mobile games. Personal and ubiquitous computing, 17(4), 741-748. Zhou, T. (2013). Understanding the effect of flow on user adoption of mobile games. Personal and ubiquitous computing, 17(4), 741-748. Zhou, T., Li, H. and Liu, Y. (2010), “The effect of flow experience on mobile SNS users’ loyalty”, Industrial Management & Data Systems, Vol. 110 No. 6, pp. 930-946.
(二) 中文文獻 朱璿瑾、江政祐、劉寧漢 (民102)。運用腦波識別專注狀態。資訊科技國際期刊,7,13-22。 郭德賓、周泰華、黃俊英(民 89)。服務業顧客滿意評量之重新檢測與驗證。中山管理評論,8,153-200。 陳映竹(民102),台灣網路商店經營現況分析。 楊璧瑜(民101),線上購物之現況與未來趨勢。
(三) 參考書籍 黃俊英(民92)。行銷學原理。台北:華泰。
(四) 參考網頁 ASAP閃電購物網 (http://www.asap.com.tw/)。 citiesocial 找好東西 (http://www.citiesocial.com/)。 亞馬遜-網路購物商城 (http://www.amazon.cn/)。 京東網路商城 (http://www.jd.com/)。 盛購有禮網 (http://www.lpdyz.com/)。 拍拍網 拍拍-拍出驚喜! (www.paipai.com)。 禮上網 禮物挑選,創意生日禮物 (http://www.giftu.com.tw/)。 禮意久久網上禮品商城 (http://www.liyi99.com/)。 |
Description: | 碩士 國立政治大學 資訊管理研究所 101356017 103 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G1013560171 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
017101.pdf | 2478Kb | Adobe PDF2 | 301 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|