政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75904
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50942403      Online Users : 988
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/75904


    Title: Team Formation for Generalized Tasks in Expertise Social Networks
    Authors: Shan, Man-kwan;Li, Cheng-Te
    沈錳坤
    Contributors: 資科系
    Date: 2010
    Issue Date: 2015-06-17 16:22:59 (UTC+8)
    Abstract: Given an expertise social network and a task consisting of a set of required skills, the team formation problem aims at finding a team of experts who not only satisfy the requirements of the given task but also communicate to one another in an effective manner. To solve this problem, Lappas et al. has proposed the Enhance Steiner algorithm. In this work, we generalize this problem by associating each required skill with a specific number of experts. We propose three approaches to form an effective team for the generalized task. First, we extend the Enhanced-Steiner algorithm to a generalized version for generalized tasks. Second, we devise a density-based measure to improve the effectiveness of the team. Third, we present a novel grouping-based method that condenses the expertise information to a group graph according to required skills. This group graph not only drastically reduces the search space but also avoid redundant communication costs and irrelevant individuals when compiling team members. Experimental results on the DBLP dataset show the teams found by our methods performs well in both effectiveness and efficiency.
    Relation: IEEE International Conference on Social Computing - SocialCom , pp. 9-16
    Data Type: article
    DOI link: http://dx.doi.org/10.1109/SocialCom.2010.12
    DOI: 10.1109/SocialCom.2010.12
    Appears in Collections:[Department of Computer Science ] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML21036View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback