政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75552
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 50957717      線上人數 : 961
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/75552
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/75552


    題名: Top-n query processing in spatial databases considering bi-chromatic reverse k-nearest neighbors
    作者: Li, C.-L.;Wang, E.T.;Huang, G.-J.;Chen, Arbee L. P.
    陳良弼
    貢獻者: 資科系
    關鍵詞: BRkNN queries;Refinement algorithms;Reverse k-nearest neighbors;RkNN queries;Spatial database;State-of-the-art algorithms;Top-n queries;Triangle inequality;Algorithms;Computational geometry;Graphic methods;Membership functions;Query languages;Text processing;Query processing
    日期: 2014-06
    上傳時間: 2015-06-03 12:33:39 (UTC+8)
    摘要: A reverse k-nearest neighbor (RkNN) query retrieves the data points which regard the query point as one of their respective k nearest neighbors. A bi-chromatic reverse k-nearest neighbor (BRkNN) query is a variant of the RkNN query, considering two types of data. Given two types of data G and C, a BRkNN query regarding a data point q in G retrieves the data points from C that regard q as one of their respective k-nearest neighbors among the data points in G. Many existing approaches answer either the RkNN query or the BRkNN query. Different from these approaches, in this paper, we make the first attempt to propose a top-n query based on the concept of BRkNN queries, which ranks the data points in G and retrieves the top-n points according to the cardinalities of the corresponding BRkNN answer sets. For efficiently answering this top-n query, we construct the Voronoi Diagram of G to index the data points in G and C. From the information associated with the Voronoi Diagram of G, the upper bound of the cardinality of the BRkNN answer sets for each data point in G can be quickly computed. Moreover, based on an existing approach to answering the RkNN query and the characteristics of the Voronoi Diagram of G, we propose a method to find the candidate region regarding a BRkNN query, which tightens the corresponding search space. Finally, based on the triangle inequality, we propose an efficient refinement algorithm for finding the exact BRkNN answers from the candidate regions. To evaluate our approach on answering the top-n query, it is compared with an approach which applies a state-of-the-art algorithm for answering the BRkNN query to each data point in G. The experiment results reveal that our approach has a much better performance. © 2014 Elsevier Ltd.
    關聯: Information Systems, 42, 123-138
    資料類型: article
    DOI 連結: http://dx.doi.org/10.1016/j.is.2014.01.001
    DOI: 10.1016/j.is.2014.01.001
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    123-138.pdf2485KbAdobe PDF2692檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋