政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75525
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113311/144292 (79%)
造访人次 : 50942057      在线人数 : 1017
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 企業管理學系 > 期刊論文 >  Item 140.119/75525


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/75525


    题名: Predicting the influence of users` posted information for eWOM advertising in social networks
    作者: Chen, Y.-L.;Tang, Kwei;Wu, C.-C.
    唐揆
    贡献者: 企管系
    关键词: Social networking (online);Electronic wordof-mouth (eWOM);Influence;Sentiment analysis;Data mining
    日期: 2014-11
    上传时间: 2015-06-02 17:10:41 (UTC+8)
    摘要: Many social network websites have been aggressively exploring innovative electronic word-of-mouth (eWOM) advertising strategies using information shared by users, such as posts and product reviews. For example, Facebook offers a service allowing marketers to utilize users` posts to automatically generate advertisements. The effectiveness of this practice depends on the ability to accurately predict a post`s influence on its readers. For an advertising strategy of this nature, the influence of a post is determined jointly by the features of the post, such as contents and time of creation, and the features of the author of the post. We propose two models for predicting the influence of a post using both sources of influence, post- and author-related features, as predictors. An empirical evaluation shows that the proposed predictive features improve prediction accuracy, and the models are effective in predicting the influence score.
    關聯: Electronic Commerce Research and Applications, 13(6), 431-439
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1016/j.elerap.2014.10.001
    DOI: 10.1016/j.elerap.2014.10.001
    显示于类别:[企業管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    431-439.pdf690KbAdobe PDF2629检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈