Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/75431
|
Title: | 應用資料探勘技術於分析電信網路障礙查修資料 Applying Data Mining Techniques to Analyze Troubleshooting Data in a Telecom Network |
Authors: | 陳心睿 Chen, Hsin Jui |
Contributors: | 徐國偉 Hsu, Kuo Wei 陳心睿 Chen, Hsin Jui |
Keywords: | 資料探勘 障礙查修 顧客服務 Data mining Troubleshooting Customer Service |
Date: | 2014 |
Issue Date: | 2015-06-01 11:04:33 (UTC+8) |
Abstract: | 現今維修部門不僅是技術導向,還趨向服務型態,更是行銷的利器,背後潛在之價值更難以估計,客戶也願意選擇較專業且迅速維修的品牌。欲使維修人員績效更佳,客戶感覺良好,進而得到口碑,以留住老客戶並吸引新客戶。此研究將以電信障礙查修資料為例,著重於探勘電信數據網路之修復記錄,修復記錄包含客服人員判斷之申告原因、各區域測量台人員進行之測試內容及查修人員至現場實際修復回報結果。 網路服務為現代人生活不可或缺的一部份,若遇到線路障礙時,可能會對客戶造成生活上之不便,也因此當線路障礙時如何儘速修復並縮短復原時間便相當緊急,處理過程中相關人員若能即時判斷並可迅速分析問題,便能減少問題的重覆和延伸,也可以確切命中核心要點,讓客戶感受到服務之迅速及高效率。 本研究透過不同資料探勘技術分析如:分類技術、關聯法則及分群技術,冀能從中找到一種最適合本障礙查修資料之分析方式,並針對該資料做更深入分析,找到障礙原因及查修結果間之聯結。進一步可以透過實驗結果,提供客服人員有利資訊,可有效的於客戶進線申告障礙時,即快速判斷障礙原因並提供協助以解決縮短客訴時間,更進而降低公司查修成本。 Today, the maintenance department is not only technique-oriented but also service-oriented, and it not only helps marketing but also provides great potential for the company. The customers would like to choose the brand that can offer professional and prompt maintenance service. In order to retain existing customers, attract new customers, and gain the public praise, the maintenance staff must perform better and the customers feel better. This study provides an example of analyzing telecom troubleshooting data with the focus on applying data mining techniques to the repair data of a telecom network, including problem descriptions from customers, testing results from the engineering units, and the results of repair. The network service is part of modern`s life. When network problems occur, they might inconvenience customers’ life. Therefore, it is important to solve the problem as soon as possible. If the maintenance staff can immediately determine and diagnose problems, they will be able to reduce chance that the problem occurs again becomes worse, and they can bring efficient services to the customers. This study evaluates several data mining methods, such as classification, association rule mining, and clustering methods. The goal is to find the most appropriate method that can help us analyze the data and further to find the relationship between causes of problems and results of repair. The results of experiments provide customer service useful information that can help the maintenance staff quickly determine what the problem is and quickly solve it. |
Reference: | 1.Agrawal, R., T. Imielinski and A. Swami, “Mining Association Rules Between Sets of Items in Large Databases,” Washington DC: SIGMOD, 1993. 2.Azevedo, A. and Santos, M. F. “KDD, SEMMA and CRISP-DM: a parallel overview,” In Proceedings of the IADIS European Conference on Data Mining, pp 182-185, 2008. 3.Berry, M. J. A. and Linoff, G., “Data Mining Technique for Marketing, Sale, and Customer Support,” Wiley Computer, 1997. 4.David Olson and Yong Shi, “Introduction to Business Data Mining,” Boston: McGraw-Hill/Irwin, 2006. 5.Doug, H., et al., “Big data: The future of biocuration,” Nature, vol.455, pp.47-50, September, 2008. 6.Ester M., Kriegel H.P., Sander J. and Xu X. “Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” In Proc. 1996 Int.Conf. Knowledge Discovery and Data Mining (KDD’96), Aug., pp. 226-231, 1996. 7.Ester M., Kriegel H.P., Sander J. and Xu X. “Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” in Proc. of KDD96: pp. 226-231, 1996. 8.F. F. Reichheld , W. E. Sasser, Jr., “Zero Defections: Quality Comes to Services,” Harvard Business Review 68, no. 5(September-October 1990), pp.105-111, 1990. 9.Fayyad, U., “Data Mining and Knowledge Discovery: Making Sense Out of Data,” IEEE Intelligent Systems, vol. 11, no. 5, pp. 20-25, Oct. 1996 10.Gonzalo Mariscal, Oscar Marban and Covadonga Fernandez, “A survey of data mining and knowledge discovery process models and methodologies”, The Knowledge Engineering Review, vol. 25:2, pp.137–166, Jun. 2010 11.Han, J. and Kamber, M. “Data Mining:Concepts and Techniques,” Morgam Kaufmann Publishers, 2000. 12.Hui, S. C., & Jha, G., ”Data mining for customer service support,” Information & Management, vol.38, pp.1-13, October, 2000. 13.Ian H. Witten and Eibe Frank, “DATA MINING practical Machine Learning Tools and Techniques,” 2nd ed. Morgan Kaufmann, 2005. 14.K. P. SOMAN, SHYAM DIWAKAR, V. AJAY. “INSIGHT INTO DATA MINING: THEORY AND PRACTICE,” Prentice Hall India, pp.65-66, 2006. 15.Kalakota Ravin et al, “e-Business: roadmap for success,” pp.114, 1999. 16.Kaufman L. and Rousseeuw PJ. “Finding Groups in Data: an Introduction to Cluster Analysis,” John Wiley & Sons, 1990. 17.Kohavi,R. a, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” Morgan Kaufmann, pp.1137-1143, 1995. 18.MacQueen J. “Some Methods for Classification and Analysis of Multivariate Observations,” In Proc. 5th Berkeley Symp. Math. Stat. and Prob., Vol. 1, pp. 281-297, 1967. 19.Mariscal, G., O. Marban and C. Fernandez, "A survey of data mining and knowledge discovery process models and methodologies." Knowledge Engineering Review, 25(2): 137-166, 2010. 20.Moss, L.T., and Arte, S, “Business Intelligence Roadmap.,” Addison-Wesley, U.S., 2003. 21.Neil Raphel and Murray Raphel, “Up the Loyalty Ladder:turning sometime customers into full-time advocates of your business,” Harper Business, 1995. 22.Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993. 23.Ravi Kalakota and Marcia Robinson, “e-Business: Roadmap for Success,” 1ed., U.S.A.: Mary T..O’Brien, 1999 24.Song, Y. C., Meng, H. D., and Zhang, Y. C, “Clustering analysis and its applications. Proceedings of the 2nd International Conference on Geoscience and Remote Sensing (IITA-GRS),” 1, pp. 514-517, 2010. 25.Tan, P. N., Steinbach, M., and Kumar, V, “Introduction to Data Mining,” Boston:Pearson Addison Wesley, 2005. 26.W. W. Cohen, “Fast effective rule induction,” in Proc. of the 12th Intl. Conf. on Machine Learning, pp. 115–123, 1995. 27.Wayland, R.E and Cole, P.M. Customer Connections : New Strategies for Growth, 1997. 28.吳尚哲,ADSL市場消費者購買行為之研究─以中華電信南區分公司推廣ADSL為例,南華大學管理研究所碩士論文,2001。 29.吳姿汶,應用分群與離群值偵測技術查核委外工程完成項目之研究,國立成功大學工業與資訊管理學系碩士在職專班碩士論文,2012。 30.吳耀明,電信服務事業顧客關係管理之研究,中山大學企業管理研究所碩士論文,2001。 31.吳懿剛,設計訊息隨選系統支援船務公司客戶關係管理之研究,高雄師範大學資訊教育研究所碩士論文,2012。 32.林東清,資訊管理-e化企業的核心競爭能力,台北市:智勝文化,2006。 33.林柏甫,客戶關係管理應用於顧客保留及顧客成長以電子業為例,國立成功大學管理學院碩士論文,2002 34.施旻慧,應用資料採礦於顧客關係管理-以建材零售業為例,東海大學工業工程與經營資訊學系碩士論文,2013。 35.常世杰,利用資料探勘Apriori演算法預測零售賣場之個人購物行為,國立高雄第一科技大學服務科學管理研究所碩士論文,2013。 36.郭家禎,運用二階段分類技術挖掘潛在中小企業借貸戶之研究,銘傳大學資訊管理學系碩士班碩士論文,2013。 37.陳佳玲,應用資料探勘於客戶關係管理之分群研究─以壽險業為例,中華大學科技管理研究所碩士論文,2003。 38.陳宜君,運用決策樹分析營業稅退稅案風險因子,逢甲大學電子商務碩士在職專班碩士論文,2013。 39.廖仁瑋,電信網路業之服務品質、顧客滿意度與顧客忠誠度關係之研究—以台灣個人用戶市場為例,東華大學企業管理學系碩士在職專班碩士論文,2006。 40.遠擎管理顧問公司,顧客關係管理深度解析,台北市:遠擎管理顧問,2001。 41.劉志峰,ADSL障礙分析與維修探究,國立交通大學經營管理研究所碩士論文,2002。 42.潘宜蓁,結合K-means 及差分演化法之入侵偵測研究,大同大學資訊工程研究所碩士論文,2009。 43.蔡金泉,應用資料探勘輔助顧客關係管理之研究-以台南區處善化門市部為例,義守大學資訊管理研究所碩士論文,2012。 |
Description: | 碩士 國立政治大學 資訊科學學系 100971016 103 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0100971016 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
101601.pdf | | 3967Kb | Adobe PDF2 | 239 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|