政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75314
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114104/145136 (79%)
造访人次 : 52288382      在线人数 : 438
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/75314


    题名: Unordered multiple image matching by using descriptor clustering
    作者: Chen, Cheng-Yi;Chio, Shih-Hong
    邱式鴻
    贡献者: 地政系
    关键词: Algorithms;Remote sensing;Space optics;Block adjustment;Cluster;K-means;Multiple image;Robust image matching;SIFT;SIFT algorithms;SIFT descriptors;Image matching
    日期: 2013-10
    上传时间: 2015-05-26 18:07:50 (UTC+8)
    摘要: Multiple image matching is an important task in photogrammetry for tie point measurement in block adjustment or generation of point clouds. Numerous algorithms can be found in the literatures. SIFT algorithm, its extracted keypoint descriptor with 128-dimensional vector consisted of the gradient statistics, is developed by Lowe (2004) and becoming a popular method for robust image matching approach by using two images for the decades. When it comes to multiple image matching, the keypoint descriptor is possibly useful. SIFT descriptors of keypoints in all images has been employed to cluster the keypoints to establish the relationship of adjacent images (Chen & Chio, 2013). Therefore, it is possible to use the descriptor clustering for multiple image matching by assuming that keypoint descriptors of the same object point from the different images will be clustered in the descriptor space. In other words, when all keypoint descriptors describe the same object point, the keypoint descriptors will be aggregated in descriptor space within a small region. In this study, adaptive K-means will be used to find all the possible clusters of keypoint descriptors automatically without any initial data. After all clusters are obtained, multiple image matching is also finished. The tests will be performed to prove the proposed idea is able to cluster the descriptors and to perform image matching for keypoints among multiple images successfully.
    關聯: 34th Asian Conference on Remote Sensing 2013, ACRS 2013, 5, 2013, 4642-4649, 34th Asian Conference on Remote Sensing 2013, ACRS 2013; Bali; Indonesia; 20 October 2013 到 24 October 2013; 代碼 105869
    数据类型: conference
    显示于类别:[地政學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML21148检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈