政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75227
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 50960332      線上人數 : 917
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/75227
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/75227


    題名: Spatial interpolation using MLP-RBFN hybrid networks
    作者: Kuo, Yau-Hwang
    郭耀煌
    Huang, K.-C.
    Yeh, I.-C.
    貢獻者: 資科系
    關鍵詞: artificial neural network;interpolation;rainfall;spatial analysis;spatial distribution;Taiwan
    日期: 2013-10
    上傳時間: 2015-05-21 16:15:55 (UTC+8)
    摘要: It is easy for a multi-layered perception (MLP) to fit a stratified spatial interpolation pattern whose form is close to open surface; while it is easy for a radial basis function network (RBFN) to fit a pocket (radial) spatial interpolation pattern whose form is close to closed surface. However, in the real world, the spatial interpolation pattern may consist of stratified and pocket patterns. Neither MLP nor RBFN can fit the pattern easily. To combine their advantages to fit the complex hybrid spatial interpolation patterns, in this article we propose a novel neural network, MLP-RBFN hybrid network (MRHN), whose hidden layer contains sigmoid and Gaussian units at the same time. Although there are two kinds of processing units in MRHN, in this study we used the principle of minimizing the error sum of squares to derive the supervised learning rules for all the network parameters. This research took rainfall distribution in Taiwan as a case study. The results show that (1) the prediction error of the testing dataset outside the training dataset demonstrated that MRHN was the most accurate among the three networks, RBFN was the next best, and MLP was the worst; (2) the MLP model seriously underestimated the values of high observed rainfall; (3) over-learning may be a serious shortcoming of using RBFN in spatial interpolation applications; (4) MRHN may have better generalization learning capacity than RBFN in spatial interpolation applications. © 2013 Taylor & Francis.
    關聯: International Journal of Geographical Information Science, 27(10), 1884-1901
    資料類型: article
    DOI 連結: http://dx.doi.org/10.1080/13658816.2013.769050
    DOI: 10.1080/13658816.2013.769050
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    1884-1901.pdf1076KbAdobe PDF2599檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋