政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75204
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 51046423      在线人数 : 952
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 企業管理學系 > 會議論文 >  Item 140.119/75204


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/75204


    题名: A study of machine learning models in epidemic surveillance: Using the query logs of search engines
    作者: Fang, Z.-H.;Tzeng, J.-S.;Chen, C.C.;Chou, Tzuchuan
    周子全
    贡献者: 國發所
    关键词: Classification models;Data sets;Economic damages;Machine-learning;Query logs;Research issues;Text mining;Classification (of information);Epidemiology;Health care;Information retrieval;Information systems;Learning systems;Monitoring;Query processing;Search engines
    日期: 2010
    上传时间: 2015-05-20 17:05:56 (UTC+8)
    摘要: Epidemics inevitably result in a large number of deaths and always cause considerable social and economic damage. Epidemic surveillance has thus become an important healthcare research issue. In 2009, Ginsberg et al. observed that the query logs of search engines can be used to estimate the status of epidemics in a timely manner. In this paper, we model epidemic surveillance as a classification problem and employ query statistics from Google to classify the status of a dengue fever epidemic. The query logs of twenty-three dengue-related keywords serve as observations for machine learning and testing, and a number of machine learning models are investigated to evaluate their surveillance performance. Evaluations based on a 5-year real world dataset demonstrate that search engine query logs can be used to construct accurate epidemic status classifiers. Moreover, the learned classifiers generally outperform conventional regression approaches. We also apply various machine learning models, including generative, discriminative, sequential, and non-sequential classification models, to demonstrate their applicability to epidemic surveillance.
    關聯: PACIS 2010 - 14th Pacific Asia Conference on Information Systems
    数据类型: conference
    显示于类别:[企業管理學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML21054检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈