English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51047688      Online Users : 962
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/74408
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/74408


    Title: Pedestrian detection using covariance descriptor and on-line learning
    Authors: Liao, Wen-Hung;Huang, Ling-Wei
    廖文宏
    Contributors: 資科系
    Keywords: Bayes Classifier;Covariance descriptor;Covariance features;Data sets;Flexible bodies;Object classification;Online learning;Pedestrian detection;Precision and recall;Still images;Test sets;Training conditions;Adaptive boosting;Artificial intelligence;Statistical tests;Support vector machines;E-learning
    Date: 2011-11
    Issue Date: 2015-04-08 17:34:07 (UTC+8)
    Abstract: Pedestrian detection is an important yet challenging problem in object classification due to flexible body pose, loose clothing and ever-changing illumination. In this paper, we employ covariance features and propose an on-line learning classifier which combines naïve Bayes classifier and cascade support vector machines (SVM) to improve the precision and recall rate of pedestrian detection in still images. Experimental results show that our strategy can significantly increase both precision and recall rates in some difficult situations. Furthermore, even under the same initial training condition, our method outperforms HOG + AdaBoost in USC Pedestrian Detection Test Set, INRIA Person dataset and Penn-Fudan Database for Pedestrian Detection and Segmentation. © 2011 IEEE.
    Relation: Proceedings - 2011 Conference on Technologies and Applications of Artificial Intelligence, TAAI 2011, 論文編號 6120740, 179-182
    10.1109/TAAI.2011.38
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1109/TAAI.2011.38
    DOI: 10.1109/TAAI.2011.38
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2982View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback