政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/73488
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51574786      在线人数 : 903
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/73488


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/73488


    题名: FEATURE EXTRACTION OF FRAUDULENT FINANCIAL REPORTING THROUGH UNSUPERVISED NEURAL NETWORKS
    作者: 蔡瑞煌
    Huang, Shin-Ying;Tsaih, Rua-Huan;Lin, Wan-Ying
    贡献者: 資管系
    关键词: Fraudulent financial reporting;growing hierarchical self-organizing map;unsupervised neural network;feature extraction
    日期: 2014
    上传时间: 2015-02-12 12:22:39 (UTC+8)
    摘要: The objective of this study is to apply an unsupervised neural network tool to analyze fraudulent financial reporting (FFR) by extracting distinguishing features from samples of groups of companies and converting them into useful information for FFR detection. This methodology can be used as a decision support tool to help build an FFR identification model or other financial fraud or financial distress scenarios. The three stages of the proposed quantitative analysis approach are as follows: the data-preprocessing stage; the clustering stage, which uses an unsupervised neural network tool known as a growing hierarchical self-organizing map (GHSOM) to cluster sample observations into subgroups with hierarchical relationships; and the feature-extraction stage, which uncovers common features of each subgroup via principle component analysis. This study uses the hierarchal topology mapping ability of a GHSOM to cluster financial data, and it adopts principal component analysis to determine common embedded features and fraud patterns. The results show that the proposed three-stage approach is helpful in revealing embedded features and fraud patterns, using a set of significant explanatory financial indicators and the proportion of fraud. The revealed features can be used to distinguish distinctive groups.
    關聯: Neural Network World,5(14),539-560
    数据类型: article
    DOI 連結: http://dx.doi.org/10.14311/NNW.2014.24.031
    DOI: 10.14311/NNW.2014.24.031
    显示于类别:[資訊管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    539-560.pdf61KbAdobe PDF2429检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈