English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50739584      Online Users : 561
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/73238
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/73238


    Title: 學術研究論文推薦系統之研究
    Development of a Recommendation System for Academic Research Papers
    Authors: 葉博凱
    Contributors: 梁定澎
    葉博凱
    Keywords: 學術論文推薦
    協同過濾
    關聯規則
    冷啟動
    FP-Growth
    recommendation systems
    collaborative filtering
    association rules
    cold start
    FP-Growth
    Date: 2014
    Issue Date: 2015-02-03 10:18:12 (UTC+8)
    Abstract: 推薦系統為網站提升使用者滿意度、減少使用者所花費的時間並且替網站提供方提升銷售,是現在網站中不可或缺的要素,而推薦系統的研究集中在娛樂項目,學術研究論文推薦系統的研究有限。若能給予有價值的相關文獻,提供協助,無疑是加速進步的速度。
    在過去的研究中,為了達到個人化目的所使用的方法,都有不可避免或未解決的缺點,2002年美國研究圖書館協會提出布達佩斯開放獲取計劃(Budapest Open Access Initiative),不要求使用者註冊帳號與支付款項就能取得研究論文全文,這樣的做法使期刊走向開放的風氣開始盛行,時至今日,開放獲取對學術期刊網站帶來重大的影響。在這樣的時空背景之下,本研究提出一個適用於學術論文之推薦機制,以FP-Growth演算法與協同過濾做為推薦方法的基礎,消弭過去研究之缺點,並具個人化推薦的優點,經實驗驗證後,證實本研究所提出的推薦架構具有良好的成效。
    Recommendation system is used in many field like movie, music, electric commerce and library. It’s not only save customers’ time but also raise organizations’ efficient. Recommended system is an essential element in a website. Some methods have been developed for recommended system, but they are primarily focused on content or collaboration-based mechanisms. For academic research, it is very important that relevant literature can be provided to researchers when they conduct literature review. Previous research indicates that there are inevitable or unsolved shortcomings in existing methods such as cold starts.
    Association of Research Libraries purpose “Budapest Open Access Initiative” that is advocate open access concept. Open access means that users can get full paper without register and pay fee. It’s a major impact to academic journal website.
    In this space-time background, we propose a hybrid recommendation mechanism that takes into consideration the nature of recommendation academic papers to mitigate the shortcomings of existing methods.
    Reference: 一、 中文部分
    1. 余明哲,2002,圖書館個人化館藏推薦系統,國立交通大學碩士論文。
    2. 邱建豪,2008,使用分群結合技術增進線上產品的推薦–以MovieLens為例,國立中正大學碩士論文。
    3. 張景堯,2007,以多重觀點本體論驅策之系統發展方法,國立政治大學博士論文。
    4. 許正怡,2008,植基於個人本體論模型與合作式過濾技術之中文圖書館推薦系統,國立中興大學碩士論文。
    5. 郭秉仁,2012,基於個人本體論與MapReduce技術之圖書推薦系統,國立中興大學碩士論文。
    6. 陳慧玲,2007,植基於個人本體論的圖書館推薦系統-以中興大學圖書館為例,國立中興大學碩士論文。
    7. 廖學毅,2007,動態協同式過濾推薦之系統實做,國立交通大學碩士論文。
    8. 蔡松霖,2013,電子商務推薦系統模型之初探,國立東華大學博士論文。
    9. 羅子文,2007,Web 2.0概念的圖書館個人化推薦系統,國立交通大學碩士論文。
    10. 楊永芳,2002,語意擴充式文件推薦方法之研究,國立中山大學碩士論文。
    二、 英文部分
    1. Adomavicius, G., & Tuzhilin, A. (2004). Recommendation Technologies: Survey of Current Methods and Possible Extensions (Working Paper). Stern School of Business, New York University.
    2. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining Association Rules Between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 207–216.
    3. Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499.
    4. Arslan, A., & Yilmazel, O. (2011). Frequent Pattern Mining Over Movie Plot Keywords. In International Conference on Computer and Computer Intelligence (ICCCI 2011), ASME Press.
    5. Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, Vol. 26, 225–238.
    6. Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, Vol. 46, pp. 109–132.
    7. Borgelt, C. (2005). An Implementation of the FP-growth Algorithm. Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, New York, NY, USA, pp. 1–5.
    8. Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, pp. 43–52.
    9. Christakou, C., & Stafylopatis, A. (2005). A hybrid movie recommender system based on neural networks. 5th International Conference on Intelligent Systems Design and Applications, 2005. ISDA ’05. Proceedings, pp. 500–505.
    10. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using Collaborative Filtering to Weave an Information Tapestry. Commun. ACM, Vol. 35(12), pp. 61–70.
    11. Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent Patterns Without Candidate Generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 1–12.
    12. He, J., & Chu, W. W. (2010). A Social Network-Based Recommender System (SNRS). Data Mining for Social Network Data, pp. 47–74.
    13. He, Q., Pei, J., Kifer, D., Mitra, P., & Giles, L. (2010). Context-aware Citation Recommendation. Proceedings of the 19th International Conference on World Wide Web, New York, NY, USA, pp. 421–430
    14. Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An Algorithmic Framework for Performing Collaborative Filtering. Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 230–237.
    15. Jinha, A. E. (2010). Article 50 million: an estimate of the number of scholarly articles in existence. Learned Publishing, Vol. 23(3), pp. 258–263.
    16. Kantor, P. B., Rokach, L., Ricci, F., & Shapira, B. (2011). Recommender systems handbook. Springer.
    17. Kim, B.-D., & Kim, S.-O. (2001). A new recommender system to combine content-based and collaborative filtering systems. Journal of Database Marketing & Customer Strategy Management, Vol. 8(3), pp. 244–252.
    18. Kim, W., Choi, D. W., & Park, S. (2008). Agent based intelligent search framework for product information using ontology mapping. Journal of Intelligent Information Systems, Vol. 30(3), pp. 227–247.
    19. Koren, Y. (2008). Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 426–434.
    20. Lee, J., Lee, K., & Kim, J. G. (2013). Personalized Academic Research Paper Recommendation System. arXiv preprint arXiv:1304.5457.
    21. Liang, T.-P., Yang, Y.-F., Chen, D.-N., & Ku, Y.-C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, Vol. 45(3), pp. 401–412.
    22. Lilien, G. L., Rangaswamy, A., Van Bruggen, G. H., & Starke, K. (2004). DSS Effectiveness in Marketing Resource Allocation Decisions: Reality vs. Perception. Information Systems Research, Vol. 15(3), pp. 216–235.
    23. Lin, C.-W., Hong, T.-P., & Lu, W.-H. (2009). The Pre-FUFP algorithm for incremental mining. Expert Systems with Applications, Vol. 36(5), pp. 9498–9505.
    24. Linden, G., Smith, B., & York, J. (2003). Amazon.Com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, Vol. 7(1), pp. 76–80.
    25. LUO, J., & LI, Y. M. (2010). Improvement on Algorithm FP-Growth and Applications in Its E-Commerce. Journal of China West Normal University (Natural Sciences), 3, 018.
    26. Matsatsinis, N. F., Lakiotaki, K., & Delias, P. (2007). A System based on Multiple Criteria Analysis for Scientific Paper Recommendation, Technical University of Crete.
    27. McLaughlin, M. R., & Herlocker, J. L. (2004). A Collaborative Filtering Algorithm and Evaluation Metric That Accurately Model the User Experience. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 329–336.
    28. Naak, A., Hage, H., & Aïmeur, E. (2009). A Multi-criteria Collaborative Filtering Approach for Research Paper Recommendation in Papyres, E-Technologies: Innovation in an Open World, Springer Berlin Heidelberg, pp. 25–39.
    29. Nunamaker, J. F., Jr., Chen, M., & Purdin, T. D. M. (1990). Systems Development in Information Systems Research. J. Manage. Inf. Syst., Vol. 7(3), pp. 89–106.
    30. Palopoli, L., Rosaci, D., & Sarné, G. M. L. (2013). A Multi-tiered Recommender System Architecture for Supporting E-Commerce, Intelligent Distributed Computing VI . Springer Berlin Heidelberg, pp. 71–81.
    31. Piateski, G., & Frawley, W. (1991). Knowledge discovery in databases. MIT press.
    32. PIATETSKY-SHAPIRO, G. (1991). Discovery, Analysis and Presentation of Strong Rules. Knowledge Discovery in Databases, pp. 229–238.
    33. Resnick, P., & Varian, H. R. (1997). Recommender Systems, Commun. ACM, Vol. 40(3), pp. 56–58.
    34. Salton, G., Wong, A., & Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Commun. ACM, Vol. 18(11), pp. 613–620.
    35. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of Recommendation Algorithms for e-Commerce. Proceedings of the 2Nd ACM Conference on Electronic Commerce, New York, NY, USA, pp. 158–167.
    36. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web ,New York, NY, USA, pp. 285–295
    37. Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998). Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, New York, NY, USA, pp. 345–354.
    38. Sinha, R., Sinha, and R., & Swearingen, K. (2001). Comparing Recommendations Made by Online Systems and Friends. Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries.
    39. Sugiyama, K., & Kan, M.-Y. (2010). Scholarly Paper Recommendation via User’s Recent Research Interests. Proceedings of the 10th Annual Joint Conference on Digital Libraries, New York, NY, USA, pp. 29–38.
    40. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston: Pearson Addison Wesley.
    41. Wang, H.-F., & Wu, C.-T. (2012). A strategy-oriented operation module for recommender systems in E-commerce. Computers & Operations Research, Vol. 39(8), pp. 1837–1849.
    42. Wang, K., Tang, L., Han, J., & Liu, J. (2002). Top Down FP-Growth for Association Rule Mining. , Advances in Knowledge Discovery and Data Mining. pp. 334–340.
    43. Wang, Y., Liu, J., Dong, X., Liu, T., & Huang, Y. (2012). Personalized Paper Recommendation Based on User Historical Behavior. In M. Zhou, G. Zhou, D. Zhao, Q. Liu, & L. Zou (Eds.), Natural Language Processing and Chinese Computing, Springer Berlin Heidelberg. Retrieved from, pp. 1–12.
    44. Xiaoyun, C., Yanshan, H., Pengfei, C., Shengfa, M., Weiguo, S., & Min, Y. (2009). HPFP-Miner: A Novel Parallel Frequent Itemset Mining Algorithm. In Fifth International Conference on Natural Computation, 2009. ICNC ’09, Vol.3, pp. 139–143.
    45. Zaki, M. J. (2000). Scalable Algorithms for Association Mining. IEEE Trans. on Knowl. and Data Eng., Vol. 12(3), pp. 372–390.

    三、 網路部分
    1. Open Access, Association of Research Libraries, http://www.arl.org/focus-areas/open-scholarship/open-access。
    Description: 碩士
    國立政治大學
    資訊管理研究所
    101356003
    103
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101356003
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    600301.pdf1647KbAdobe PDF2260View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback