English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51571876      Online Users : 893
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/71000


    Title: 三甲基甘胺酸和二甲基甘胺酸改善甲基安非他命所導致神經行為毒性
    N,N,N-Trimethylglycine and N,N-Dimethylglycine improve methamphetamine-induced neurobehavioral toxicity
    Authors: 陳映安
    Contributors: 陳慧諴
    詹銘煥

    陳映安
    Keywords: 甲基安非他命
    三甲基甘胺酸
    二甲基甘胺酸
    紋狀體
    前額葉皮質區
    METH
    TMG
    DMG
    stratium
    medial prefrontal cortex
    Date: 2013
    Issue Date: 2014-11-03 10:12:22 (UTC+8)
    Abstract: 甲基安非他命是一種被廣泛濫用的非法神經興奮劑,而且使用之後常伴隨著精神疾病的發生,動物研究也顯示,施打甲基安非他命所引起的神經毒性不僅會造成多巴胺神經元及血清素神經元的損傷,也引起認知功能和社交行為的缺失,同時對於產生迷幻作用的5-HT2A受體作用劑的行為反應增強。N,N,N-trimethylglycine (TMG)和N,N-dimethylglycine (DMG)是甘胺酸的甲基化衍生物,由於這兩種藥物具有治療神經系統疾病的潛力,因此本研究的目的為評估TMG及DMG是否可以預防或改善小鼠在甲基安非他命的暴露下所導致的行為缺失包括新位置辨識測試,新物體辨識測試,社交行為互動測試以及使用5-HT2A受體作用劑DOI 誘導小鼠頭部抽搐(head twitch )的行為。實驗方式為腹腔注射給予雄性ICR小鼠甲基安非他命,一天注射四劑(4 × 5mg/kg),每劑間隔兩小時。實驗一,小鼠在暴露甲基安非他命,先確認行為改變後,給予腹腔注射TMG及DMG (10或30 mg/kg)連續七天,評估TMG及DMG的治療效果。實驗二在施打每劑甲基安非他命30分鐘前給予TMG及DMG (100 mg/kg),七天後進行行為評估,實驗三,評估TMG及DMG個別及混合劑量的治療效果,小鼠給予甲基安非他命之後,先確認行為改變,再給予腹腔注射TMG及DMG (20、5+5或是10+10 mg/kg) 連續七天,七天後進行行為測試。實驗四,檢測TMG及DMG的治療效果是否藉由活化NMDA受體glycine binding site,小鼠給予甲基安非他命七天之後,腹腔注射TMG及DMG (20 mg/kg)並在給予TMG及DMG前30分鐘給予glycine binding site 拮抗劑7-chlorokynurenic acid (7-CK) (1 mg/kg),連續給藥七天,七天後進行行為評估。實驗結果發現連續給予七天TMG及DMG在個別劑量及混合劑量中都能夠恢復甲基安非他命所造成的認知功能缺損,社交退縮和降低由DOI 誘導小鼠頭部抽搐行為表現,以及在紋狀體中酪氨酸羥化酶的蛋白質表達減少情況。而前給予7-CK則阻斷TMG及DMG對甲基安非他命所造成的認知功能缺損,社交退縮的改善作用,但是對TMG及DMG對DOI 誘導小鼠頭部抽搐的行為的改善作用影響較小,顯示TMG及DMG可能都是經由活化NMDA 受體的glycine binding site改善甲基安非他命所造成的認知功能缺損,社交退縮,這些發現表示,TMG及DMG具有治療甲基安非他命成癮者所造成的精神分裂等異常症狀的潛力。
    Methamphetamine (METH) is a widely abused illicit psychostimulant. METH use is commonly associated with psychosis. A neurotoxic regimen of METH, which damages the dopaminergic and serotonergic neurons, causes cognitive dysfunction, social interaction deficits, and supersensitivity to hallucinogen in mice. N,N,N-trimethylglycine (TMG) and N,N-dimethylglycine (DMG) are methyl derivatives of amino acid glycine and naturally occur as intermediate metabolites in choline-to-glycine metabolism. Growing evidence shows that both compounds have potential to treat some neurological disorders. The aim of this study was to examine the protective and therapeutic effects of TMG and DMG on METH-induced behavioral aberrations. The novel location recognition test (NLRT), the novel objective recognition test (NORT), the social interaction and the hallucinogenic 2, 5-dimethoxy-4-iodoamphetamine (DOI)-induced head twitch response were evaluated. Male ICR mice received one day drug treatment with four injections of METH (4 × 5 mg/kg, i.p.) or saline at 2h interval. First, TMG or DMG (10 or 30 mg/kg, i.p.) were separately administered once daily for seven consecutive days after the behavioral impairment was confirmed in METH-treated mice. Seven days after final injection of TMG and DMG, the behavioral tests were monitored. Secondly, the preveting effects of TMG and DMG were examined by TMG and DMG (100 mg/kg, i.p.) pretreatment, 30 min prior to each dose of METH. Third, the lower dose (20 mg/kg) and combined effects of TMG and DMG (5+5 or 10+10 mg/kg i.p.) were evaluated. Fourth, in order to determine if the improving effects of TMG and DMG are mediated by NMDA receptor glycine binding site, the glycine binding site antagonist 7-CK (1 mg/kg, i.p.) was administered 30 min prior to each dose of TMG and DMG (20 mg/kg, i.p.), TMG and DMG dose-dependently improved, but not prevented the METH-induced cognition deficits, social withdrawal and hypersensitivity to hallucinogen with additional effect. Pretreatment of 7-CK, reversed the improving effects of TMG and DMG on behavioral deficits after METH exposure, yet had minor effect on hypersensitivity to hallucinogen. These results demonstrate that TMG and DMG might activate the glycine binding site of NMDA receptor to improve METH-induced cognition deficits and social withdrawal. TMG and DMG may be the novel therapeutic agents for psychiatric disorders related to METH abuse.
    Reference: Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain research Brain research reviews 31:302-312.
    Ago Y, Nakamura S, Hayashi A, Itoh S, Baba A, Matsuda T (2006) Effects of osemozotan, ritanserin and azasetron on cocaine-induced behavioral sensitization in mice. Pharmacology, biochemistry, and behavior 85:198-205.
    Albertson TE, Derlet RW, Van Hoozen BE (1999) Methamphetamine and the expanding complications of amphetamines. The Western journal of medicine 170:214-219.
    Barker GR, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27:2948-2957.
    Barr AM, Panenka WJ, MacEwan GW, Thornton AE, Lang DJ, Honer WG, Lecomte T (2006) The need for speed: an update on methamphetamine addiction. Journal of psychiatry & neuroscience : JPN 31:301-313.
    Baszczuk A, Kopczynski Z (2014) Hyperhomocysteinemia in patients with cardiovascular disease. Postepy higieny i medycyny doswiadczalnej 68:579-589.
    Bechara A, Martin EM (2004) Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology 18:152-162.
    Belcher AM, Feinstein EM, O`Dell SJ, Marshall JF (2008) Methamphetamine influences on recognition memory: comparison of escalating and single-day dosing regimens. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 33:1453-1463.
    Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annual review of medicine 60:355-366.
    Bolman WM, Richmond JA (1999) A double-blind, placebo-controlled, crossover pilot trial of low dose dimethylglycine in patients with autistic disorder. Journal of autism and developmental disorders 29:191-194.
    Bonito-Oliva A, Pignatelli M, Spigolon G, Yoshitake T, Seiler S, Longo F, Piccinin S, Kehr J, Mercuri NB, Nistico R, Fisone G (2014) Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. Biological psychiatry 75:701-710.
    Bowyer JF, Tank AW, Newport GD, Slikker W, Jr., Ali SF, Holson RR (1992) The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in rat striatum. The Journal of pharmacology and experimental therapeutics 260:817-824.
    Broening HW, Pu C, Vorhees CV (1997) Methamphetamine selectively damages dopaminergic innervation to the nucleus accumbens core while sparing the shell. Synapse 27:153-160.
    Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. Journal of neurochemistry 95:429-436.
    Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. European journal of pharmacology 398:11-18.
    Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochemistry international 32:117-131.
    Carrico AW, Flentje A, Gruber VA, Woods WJ, Discepola MV, Dilworth SE, Neilands TB, Jain J, Siever MD (2014) Community-Based Harm Reduction Substance Abuse Treatment with Methamphetamine-Using Men Who Have Sex with Men. Journal of urban health : bulletin of the New York Academy of Medicine.
    Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remiao F, Carvalho F, Bastos Mde L (2012) Toxicity of amphetamines: an update. Archives of toxicology 86:1167-1231.
    Cass WA (1997) Decreases in evoked overflow of dopamine in rat striatum after neurotoxic doses of methamphetamine. The Journal of pharmacology and experimental therapeutics 280:105-113.
    Cenci MA, Kalen P, Mandel RJ, Bjorklund A (1992) Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat. Brain research 581:217-228.
    Chai GS, Jiang X, Ni ZF, Ma ZW, Xie AJ, Cheng XS, Wang Q, Wang JZ, Liu GP (2013) Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine. Journal of neurochemistry 124:388-396.
    Chan P, Chen JH, Lee MH, Deng JF (1994) Fatal and nonfatal methamphetamine intoxication in the intensive care unit. Journal of toxicology Clinical toxicology 32:147-155.
    Chapman DE, Hanson GR, Kesner RP, Keefe KA (2001) Long-term changes in basal ganglia function after a neurotoxic regimen of methamphetamine. The Journal of pharmacology and experimental therapeutics 296:520-527.
    Chiu HY, Chan MH, Lee MY, Chen ST, Zhan ZY, Chen HH (2014) Long-lasting alterations in 5-HT2A receptor after a binge regimen of methamphetamine in mice. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum 1-12.
    Clemens KJ, Van Nieuwenhuyzen PS, Li KM, Cornish JL, Hunt GE, McGregor IS (2004) MDMA ("ecstasy"), methamphetamine and their combination: long-term changes in social interaction and neurochemistry in the rat. Psychopharmacology 173:318-325.
    Cohen G (1987) Monoamine oxidase, hydrogen peroxide, and Parkinson`s disease. Advances in neurology 45:119-125.
    Cotlarciuc I, Malik R, Holliday EG, Ahmadi KR, Pare G, Psaty BM, Fornage M, Hasan N, Rinne PE, Ikram MA, Markus HS, Rosand J, Mitchell BD, Kittner SJ, Meschia JF, van Meurs JB, Uitterlinden AG, Worrall BB, Dichgans M, Sharma P, on behalf of M, the International Stroke Genetics C (2014) Effect of Genetic Variants Associated With Plasma Homocysteine Levels on Stroke Risk. Stroke; a journal of cerebral circulation.
    Craig SA (2004) Betaine in human nutrition. The American journal of clinical nutrition 80:539-549.
    Cretzmeyer M, Sarrazin MV, Huber DL, Block RI, Hall JA (2003) Treatment of methamphetamine abuse: research findings and clinical directions. Journal of substance abuse treatment 24:267-277.
    Darke S, Kaye S, McKetin R, Duflou J (2008) Major physical and psychological harms of methamphetamine use. Drug and alcohol review 27:253-262.
    Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain research Brain research reviews 36:1-22.
    Dayan P, Huys QJ (2009) Serotonin in affective control. Annual review of neuroscience 32:95-126.
    Derlet RW, Rice P, Horowitz BZ, Lord RV (1989) Amphetamine toxicity: experience with 127 cases. The Journal of emergency medicine 7:157-161.
    Eisch AJ, Gaffney M, Weihmuller FB, O`Dell SJ, Marshall JF (1992) Striatal subregions are differentially vulnerable to the neurotoxic effects of methamphetamine. Brain Res 598:321-326.
    Fink M, Akimova E, Spindelegger C, Hahn A, Lanzenberger R, Kasper S (2009) Social anxiety disorder: epidemiology, biology and treatment. Psychiatria Danubina 21:533-542.
    Finkelstein JD, Harris BJ, Kyle WE (1972) Methionine metabolism in mammals: kinetic study of betaine-homocysteine methyltransferase. Archives of biochemistry and biophysics 153:320-324.
    Friedman SD, Castaneda E, Hodge GK (1998) Long-term monoamine depletion, differential recovery, and subtle behavioral impairment following methamphetamine-induced neurotoxicity. Pharmacol Biochem Behav 61:35-44.
    Garcia-Munoz M, Lopez-Huerta VG, Carrillo-Reid L, Arbuthnott GW (2014) Extrasynaptic glutamate NMDA receptors: Key players in striatal function. Neuropharmacology.
    Gascon G, Patterson B, Yearwood K, Slotnick H (1989) N,N dimethylglycine and epilepsy. Epilepsia 30:90-93.
    Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life sciences 35:2505-2511.
    Gluck MR, Moy LY, Jayatilleke E, Hogan KA, Manzino L, Sonsalla PK (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. Journal of neurochemistry 79:152-160.
    Go EK, Jung KJ, Kim JM, Lim H, Lim HK, Yu BP, Chung HY (2007) Betaine modulates age-related NF-kappaB by thiol-enhancing action. Biological & pharmaceutical bulletin 30:2244-2249.
    Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439-452.
    Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, Weisstaub N, Hen R, Gingrich JA, Sealfon SC (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:8836-8843.
    Gouzoulis-Mayfrank E, Daumann J (2009) Neurotoxicity of drugs of abuse--the case of methylenedioxyamphetamines (MDMA, ecstasy), and amphetamines. Dialogues in clinical neuroscience 11:305-317.
    Graber CD, Goust JM, Glassman AD, Kendall R, Loadholt CB (1981) Immunomodulating properties of dimethylglycine in humans. The Journal of infectious diseases 143:101-105.
    Gross NB, Duncker PC, Marshall JF (2011) Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity. Neuroscience 199:272-283.
    Hagar H, Al Malki W (2014) Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3. Environmental toxicology and pharmacology 37:803-811.
    Halkitis PN, Shrem MT (2006) Psychological differences between binge and chronic methamphetamine using gay and bisexual men. Addictive behaviors 31:549-552.
    Harnett AN, Thorpe P, Hungerford J (1988) Cavernous haemangioma presenting as an orbital mass after enucleation for a choroidal melanoma: case report. The British journal of ophthalmology 72:618-620.
    Haughey HM, Brown JM, Wilkins DG, Hanson GR, Fleckenstein AE (2000) Differential effects of methamphetamine on Na(+)/Cl(-)-dependent transporters. Brain research 863:59-65.
    Herring NR, Schaefer TL, Gudelsky GA, Vorhees CV, Williams MT (2008) Effect of +-methamphetamine on path integration learning, novel object recognition, and neurotoxicity in rats. Psychopharmacology (Berl) 199:637-650.
    Homer BD, Solomon TM, Moeller RW, Mascia A, DeRaleau L, Halkitis PN (2008) Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychological bulletin 134:301-310.
    Hooshmand B, Solomon A, Kareholt I, Leiviska J, Rusanen M, Ahtiluoto S, Winblad B, Laatikainen T, Soininen H, Kivipelto M (2010) Homocysteine and holotranscobalamin and the risk of Alzheimer disease: a longitudinal study. Neurology 75:1408-1414.
    Hotchkiss AJ, Gibb JW (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. The Journal of pharmacology and experimental therapeutics 214:257-262.
    Jung GY, Won SB, Kim J, Jeon S, Han A, Kwon YH (2013) Betaine Alleviates Hypertriglycemia and Tau Hyperphosphorylation in db/db Mice. Toxicological research 29:7-14.
    Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of "reverse tolerance" to cocaine and amphetamine by MK-801. Life sciences 45:599-606.
    Kern JK, Miller VS, Cauller PL, Kendall PR, Mehta PJ, Dodd M (2001) Effectiveness of N,N-dimethylglycine in autism and pervasive developmental disorder. Journal of child neurology 16:169-173.
    Kharbanda KK (2007) Role of transmethylation reactions in alcoholic liver disease. World journal of gastroenterology : WJG 13:4947-4954.
    Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278:12070-12077.
    Kita T, Miyazaki I, Asanuma M, Takeshima M, Wagner GC (2009) Dopamine-induced behavioral changes and oxidative stress in methamphetamine-induced neurotoxicity. International review of neurobiology 88:43-64.
    Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, Tsai GE (2008) Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biological psychiatry 63:9-12.
    Lazzeri G, Lenzi P, Busceti CL, Ferrucci M, Falleni A, Bruno V, Paparelli A, Fornai F (2007) Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons. Journal of neurochemistry 101:1414-1427.
    Liu J, Moghaddam B (1995) Regulation of glutamate efflux by excitatory amino acid receptors: evidence for tonic inhibitory and phasic excitatory regulation. The Journal of pharmacology and experimental therapeutics 274:1209-1215.
    Liu XP, Qian X, Xie Y, Qi Y, Peng MF, Zhan BC, Lou ZQ (2014) Betaine suppressed Abeta generation by altering amyloid precursor protein processing. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology.
    Mark KA, Soghomonian JJ, Yamamoto BK (2004) High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:11449-11456.
    Millian NS, Garrow TA (1998) Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Archives of biochemistry and biophysics 356:93-98.
    Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M (2011) Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. Journal of neuroinflammation 8:153.
    Miyazaki I, Asanuma M, Diaz-Corrales FJ, Fukuda M, Kitaichi K, Miyoshi K, Ogawa N (2006) Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20:571-573.
    Muller CP, Homberg JR (2014) The role of serotonin in drug use and addiction. Behavioural brain research.
    Nakayama M, Koyama T, Yamashita I (1993) Long-lasting decrease in dopamine uptake sites following repeated administration of methamphetamine in the rat striatum. Brain Res 601:209-212.
    Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Progress in neurobiology 67:53-83.
    Potashkin JA, Meredith GE (2006) The role of oxidative stress in the dysregulation of gene expression and protein metabolism in neurodegenerative disease. Antioxidants & redox signaling 8:144-151.
    Prozialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. The Journal of pharmacology and experimental therapeutics 343:2-12.
    Pu C, Fisher JE, Cappon GD, Vorhees CV (1994) The effects of amfonelic acid, a dopamine uptake inhibitor, on methamphetamine-induced dopaminergic terminal degeneration and astrocytic response in rat striatum. Brain Res 649:217-224.
    Ricaurte GA, Fuller RW, Perry KW, Seiden LS, Schuster CR (1983) Fluoxetine increases long-lasting neostriatal dopamine depletion after administration of d-methamphetamine and d-amphetamine. Neuropharmacology 22:1165-1169.
    Riddle EL, Fleckenstein AE, Hanson GR (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J 8:E413-418.
    Rohanova M, Balikova M (2009) Studies on distribution and metabolism of para-methoxymethamphetamine (PMMA) in rats after subcutaneous administration. Toxicology 259:61-68.
    Sasaki JE, Tatham TA, Barrett JE (1995) The discriminative stimulus effects of methamphetamine in pigeons. Psychopharmacology 120:303-310.
    Sato M, Numachi Y, Hamamura T (1992) Relapse of paranoid psychotic state in methamphetamine model of schizophrenia. Schizophr Bull 18:115-122.
    Schmidt CJ, Gibb JW (1985) Role of the serotonin uptake carrier in the neurochemical response to methamphetamine: effects of citalopram and chlorimipramine. Neurochemical research 10:637-648.
    Schroder N, O`Dell SJ, Marshall JF (2003) Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse 49:89-96.
    Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y, Tsuchiya KJ, Tsukada H, Iyo M, Mori N (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Archives of general psychiatry 63:90-100.
    Semple SJ, Grant I, Patterson TL (2005) Negative self-perceptions and sexual risk behavior among heterosexual methamphetamine users. Substance use & misuse 40:1797-1810.
    Semple SJ, Patterson TL, Grant I (2003) Binge use of methamphetamine among HIV-positive men who have sex with men: pilot data and HIV prevention implications. AIDS education and prevention : official publication of the International Society for AIDS Education 15:133-147.
    Sharma HS, Ali SF (2006) Alterations in blood-brain barrier function by morphine and methamphetamine. Annals of the New York Academy of Sciences 1074:198-224.
    Smythies JR, Halsey JH (1984) Treatment of Parkinson`s disease with L-methionine. Southern medical journal 77:1577.
    Solhi H, Malekirad A, Kazemifar AM, Sharifi F (2014) Oxidative stress and lipid peroxidation in prolonged users of methamphetamine. Drug metabolism letters 7:79-82.
    Staiti AM, Morgane PJ, Galler JR, Grivetti JY, Bass DC, Mokler DJ (2011) A microdialysis study of the medial prefrontal cortex of adolescent and adult rats. Neuropharmacology 61:544-549.
    Steed E, Jones CA, McCreary AC (2011) Serotonergic involvement in methamphetamine-induced locomotor activity: a detailed pharmacological study. Behavioural brain research 220:9-19.
    Stephans SE, Yamamoto BK (1994) Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17:203-209.
    Tanaka S, Ide M, Shibutani T, Ohtaki H, Numazawa S, Shioda S, Yoshida T (2006) Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats. Journal of neuroscience research 83:557-566.
    Thrash-Williams B, Ahuja M, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Dhanasekaran M (2013) Assessment of therapeutic potential of amantadine in methamphetamine induced neurotoxicity. Neurochemical research 38:2084-2094.
    Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain research 721:140-149.
    Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94:213-216.
    Tsai CH, Huang HC, Liu BL, Li CI, Lu MK, Chen X, Tsai MC, Yang YW, Lane HY (2014) Activation of N-methyl-D-aspartate receptor glycine site temporally ameliorates neuropsychiatric symptoms of Parkinson`s disease with dementia. Psychiatry and clinical neurosciences.
    Ujike H, Tsuchida H, Kanzaki A, Akiyama K, Otsuki S (1992) Competitive and non-competitive N-methyl-D-aspartate antagonists fail to prevent the induction of methamphetamine-induced sensitization. Life sciences 50:1673-1681.
    Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual review of genetics 39:359-407.
    Walsh SL, Wagner GC (1992) Motor impairments after methamphetamine-induced neurotoxicity in the rat. J Pharmacol Exp Ther 263:617-626.
    Watt MJ, Roberts CL, Scholl JL, Meyer DL, Miiller LC, Barr JL, Novick AM, Renner KJ, Forster GL (2014) Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors. Psychopharmacology 231:1627-1636.
    Williams GV, Rao SG, Goldman-Rakic PS (2002) The physiological role of 5-HT2A receptors in working memory. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:2843-2854.
    Windahl KL, McTigue MJ, Pearson JR, Pratt SJ, Rowe JE, Sear EM (1995) Investigation of the impurities found in methamphetamine synthesised from pseudoephedrine by reduction with hydriodic acid and red phosphorus. Forensic science international 76:97-114.
    Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC (2007) Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicology and applied pharmacology 220:243-251.
    Xu W, Zhu JP, Angulo JA (2005) Induction of striatal pre- and postsynaptic damage by methamphetamine requires the dopamine receptors. Synapse 58:110-121.
    Yoo JH, Cho JH, Yu HS, Lee KW, Lee BH, Jeong SM, Nah SY, Kim HC, Lee SY, Jang CG (2006) Involvement of 5-HT receptors in the development and expression of methamphetamine-induced behavioral sensitization: 5-HT receptor channel and binding study. Journal of neurochemistry 99:976-988.
    Zaczek R, Culp S, De Souza EB (1990) Intrasynaptosomal sequestration of [3H]amphetamine and [3H]methylenedioxyamphetamine: characterization suggests the presence of a factor responsible for maintaining sequestration. J Neurochem 54:195-204.
    Zhu JP, Xu W, Angulo JA (2005) Disparity in the temporal appearance of methamphetamine-induced apoptosis and depletion of dopamine terminal markers in the striatum of mice. Brain research 1049:171-181.
    Description: 碩士
    國立政治大學
    神經科學研究所
    100754006
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100754006
    Data Type: thesis
    Appears in Collections:[神經科學研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2501View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback