Reference: | [1]Benford, F. "The law of anomalous numbers," Proceedings of the American Philosophical Society (78:4) 1938, pp 551-572. [2]Bolton, R. J., & Hand, D. J. "Statistical fraud detection: A review," Statistical Science) 2002, pp 235-249. [3]Busta, B., & Weinberg, R. "Using Benford’s law and neural networks as a review procedure," Managerial Auditing Journal (13:6) 1998, pp 356-366. [4]Busta, B., & Weinberg, R. "Using Benford’s law and neural networks as a review procedure," Managerial Auditing Journal (13:6) 1998, pp 356-366 [5]Carslaw C. (1988), Anomalies in Income Numbers: Evidence of Goal Oriented Behavior, The Accounting review 63(2), pp.321-327. [6]Chan, P. and S. Stolfo, 1998, “Toward scalable learning with non-uniform class and cost distributions: a case study in credit card fraud detection”, In KDD-98, Agrawal, Stolorz, and Piatetsky-Shapiro, Eds.,AAAI Press, pp. 164-168. [7]Christopher J. Skousen, Liming Guan, T. Sterling Wetzel (2004), Anomalies and Unusual Patterns in Reported Earnings: Japanese Managers Round Earnings, Journal of International Financial Management and Accounting 15(3). [8]Cortes, Corinna; and Vapnik, Vladimir N.; "Support-Vector Networks", Machine Learning, 20, 1995 [9]Dean, J., and Ghemawat, S., 2008, “MapReduce: Simplified Data Processing on Large Clusters”, Communications of the ACM, 51(1): p. 107-113. [10]Drake, P. D., & Nigrini, M. J. "Computer assisted analytical procedures using Benford`s Law* 1," Journal of Accounting Education (18:2) 2000, pp 127-146. [11]Efron, B. (1979). Bootstrap Methods:Another Look at the Jackknife. Annals of Statist. 7,1-26. [12]Fawcett, Tom and Foster Provost, 1999, “Activity monitoring: noticing interesting changes in behavior”, In Proc. of KDD-99, pp. 53-62 [13]Fayyad, U., G. Piatetsky-Shapiro and P. Smyth, 1996, ”From Data Mining to Knowledge Discovery: An Overview”, Advances in Knowledge Discovery and Data Mining, pp.1-36. [14]Formann, A. K. "The Newcomb-Benford Law in its relation to some common distributions," PLoS One (5:5) 2010, p e10541. [15]Glaser, W. A. Paying the doctor: systems of remuneration and their effects Johns Hopkins Press, Baltimore, 1970. [16]Hal Varian: Benford`s law, American Statistician 26, p.65. [17]HBase官方網站.(2014).Retrieved from http://hadoop.apache.org/hbase/. [18]Hill, T. P. "A statistical derivation of the significant-digit law," Statistical Science) 1995, pp 354-363. [19]Hill, T. P. "A statistical derivation of the significant-digit law," Statistical Science) 1995, pp 354-363 [20]Jeffrey Dean and Sanjay Ghemawat, 2008 , “Mapreduce: Simplified data processing on large clusters”, Commun.ACM, vol. 51, no.1, pp. 137–150. [21]Laine, S., & Simila, T. "Using SOM-based data binning to support supervised variable selection," in: Neural Information Processing, N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal and S.K. Parui (eds.), Springer-Verlag Berlin, Berlin, 2004, pp. 172-180. [22]Lu, F., & Boritz, J. E. "Detecting fraud in health insurance data: Learning to model incomplete Benford`s law distributions," in: Machine Learning: Ecml 2005, Proceedings, J. Gama, R. Camacho, P. Brazdil, A. Jorge and L. Torgo (eds.), Springer-Verlag Berlin, Berlin, 2005, pp. 633-640. [23]Lu, F., Boritz, J. E., & Covvey, D. "Adaptive Fraud Detection using Benford`s Law," in: Advances in Artificial Intelligence, Proceedings, L. Lamontagne and M. Marchand (eds.), Springer-Verlag Berlin, Berlin, 2006, pp. 347-358. [24]Nigrini, M. J. "A taxpayer compliance application of Benford`s law," The Journal of the American Taxation Association (18:1) 1996, pp 72-91. [25]Nigrini, M. J., & Mittermaier, L. J. "The use of Benford`s law as an aid in analytical procedures," Auditing (16) 1997, pp 52-67. [26]Paul C. Zikopoulos, B.A., M.B.A.(2012),” Understanding Big Data-Analytics for Enterprise Class Hadoop and Streaming Data”,The McGraw-Hill Companies. [27]psvm.(2014).Retrieved from http://code.google.com/p/psvm/ [28]Satnam Alag, 2008,“Collective Intelligence In Action”, Manning Pubns Co, pp 298-299. [29]Simon Newcomb (1881). "Note on the frequency of use of the different digits in natural numbers". American Journal of Mathematics (American Journal of Mathematics, Vol. 4, No. 1) 4 (1/4): 39–40 [30]Sparrow, M. K.,1998 , “Fraud Control in the Health Care Industry: Assessing the State of the Art.”, National Institute of Justice:1-12. [31]Steven W. Smith. "The Scientist and Engineer`s Guide to Digital Signal Processing, chapter 34, Explaining Benford`s Law". 2012. [32]Support Vector Machines簡介.(2014).Retrieved from http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM2.pdf [33]Thomas, Jacob K. (1989), Unusual patterns in reported earnings, The Accounting Review 64(4), pp.773-787. [34]White, Tom & Cutting, Doug(2011)。Hadoop: The Definitive Guide. Oreilly & Associates Inc. [35]Wikipedia- Benford`s law(2013), Retrieved from http://en.wikipedia.org/wiki/Benford`s_law [36]中央健康保險局(2012),2012-2013全民健康保險簡介,行政院衛生署中央健康保險局 [37]全民健康保險研究資料庫.(2014).Retrieved from http://nhird.nhri.org.tw/index.php#. [38]林弘德.(2007). piaip 的 (lib)SVM 簡易入門.Retrieved from http://ntu.csie.org/~piaip//docs/svm/# [39]國家衛生研究院.(2014).Wikipedia-MapReduce.Retrieved from http://en.wikipedia.org/wiki/MapReduce [40]連賢明(2008),"如何使用健保資料進行經濟研究," 經濟論文叢刊 (36:1), pp 115-143。 [41]陳均輔 (2013). "資策會Find網站." from http://www.find.org.tw/find/home.aspx?page=many&id=359. [42]湯玲郎, & 林信忠 "資料萃取法在健保費用稽核之研究," 醫療資訊雜誌 (11) 2000, pp 85-104. [43]雲端運算使用案例討論小組(2010),雲端運算使用案例白皮書,Cloud Computing Use Cases group。 [44]楊喻翔(2012),” 運用Benford定律的智慧型健保費用異常偵測模型之研究”, 台灣碩博士論文網。 [45]蔡碧展(2010),”基於Hadoop平台的雲端基因架構:,台灣碩博士論文網。 [46]鄭守夏.(2011).健保資料庫內容與應用. [47]駱至中, 王鄭慈, 林錦昌, & 戴丁榮 "應用遺傳模糊專家分類系統於健保醫療費用申報異常行為之自動化檢測," 計量管理期刊 (2:1) 2005, pp 15-26 [48]謝明瑞(2002),”全民健保的省思”,《國政分析》財經(析)091-014 號。 [49]趨勢科技研發實驗室.(2009).Hbase介紹-資料模型與系統架構. [50]藍中賢, & 詹前隆 "結合模糊及合理論與貝氏分類法之資料探勘技術," in: 第十一屆全國資訊管理學術研討, 中山大學, 高雄, 2000 |