English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51579629      Online Users : 1054
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 企業管理學系 > 期刊論文 >  Item 140.119/70629
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/70629


    Title: A novel decision tree method for structured continuous-label classification
    Authors: Hu, Hsiao-Wei;Chen, Yen-Liang;Tang, Kwei
    Contributors: 企管系
    Keywords: Classification algorithms;data mining;decision trees (DTs)
    Date: 2013.01
    Issue Date: 2014-10-16 17:52:42 (UTC+8)
    Abstract: Structured continuous-label classification is a variety of classification in which the label is continuous in the data, but the goal is to classify data into classes that are a set of predefined ranges and can be organized in a hierarchy. In the hierarchy, the ranges at the lower levels are more specific and inherently more difficult to predict, whereas the ranges at the upper levels are less specific and inherently easier to predict. Therefore, both prediction specificity and prediction accuracy must be considered when building a decision tree (DT) from this kind of data. This paper proposes a novel classification algorithm for learning DT classifiers from data with structured continuous labels. This approach considers the distribution of labels throughout the hierarchical structure during the construction of trees without requiring discretization in the preprocessing stage. We compared the results of the proposed method with those of the C4.5 algorithm using eight real data sets. The empirical results indicate that the proposed method outperforms the C4.5 algorithm with regard to prediction accuracy, prediction specificity, and computational complexity.
    Relation: IEEE Transactions on Systems, Man, and Cybernetics, 43(6), 1734 - 1746
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1109/TSMCB.2012.2229269
    DOI: 10.1109/TSMCB.2012.2229269
    Appears in Collections:[企業管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2948View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback