English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50998266      Online Users : 879
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/70249


    Title: 第一原理理論計算研究鐵(鐵鉑)/氧化鎂薄膜和介面的磁性
    Ab Initio Studies of the Magnetic Properties of Fe(FePt)/MgO Thin Films and Interfaces
    Authors: 吳明璟
    Wu, Ming Ching
    Contributors: 郭光宇
    Guo, Guang Yu
    吳明璟
    Wu, Ming Ching
    Keywords: 磁性異向性
    磁性穿隧結
    自旋電子學
    穿隧磁阻
    Magnetic anisotropy
    Magnetic tunnel junction
    Spintronics
    Tunnel magnetoresistance
    Date: 2013
    Issue Date: 2014-10-01 13:15:41 (UTC+8)
    Abstract: 近年來人們發現電子在不同磁性材料上會受自旋影響而改變傳導性質,此現象可應用在磁電阻式隨機存取記憶。因此本論文利用第一原理計算磁性穿隧通道結構的磁矩、電子結構、磁性異向能(MAE)等等。特別是以鐵(Fe)及鐵鉑合金(FePt)為鐵磁層,氧化鎂(MgO)為阻障層之超晶格結構以及增加氧化鎂或鉭(Ta)為覆蓋層具真空層之超晶胞。我們利用Jullier 模型透過電子態密度,計算穿隧磁阻比(TMR),我們發現在Fe/MgO/Fe穿隧結的結構增加鐵磁層數會使穿隧磁阻比下降,在FePt/MgO/FePt穿隧結的結構中鐵氧接面比鉑氧接面型態擁有高穿隧磁阻比值,在有覆蓋層型態上鉭覆蓋層會使鐵極化率減弱,進而使鉭覆蓋層的穿隧磁阻比值比氧化鎂覆蓋層小。垂直磁性異向能方面,我們引入自旋軌道交互作用計算不同自旋方向模式分析軌道磁矩,最後分解能帶以分析軌域對磁性異向能的影響。我們發現在Fe/MgO結構的自旋方向在垂直於平面與平行於平面兩種形態時,Γ點附近會因為自旋軌道交互作用發生分裂現象,這說明在Γ點附近可能是造成垂直磁性異向能之發生原因,並且氧化鎂接面鐵的dxz和 dyz軌域在費米能級附近擁有高比例之電子密度分布,這代表dxz和 dyz軌域在自旋軌道作用中扮演中要角色。在有覆蓋層結構計算中,我們也發現坦覆蓋層會減弱鉭與鐵磁層接面附近鐵的軌道磁矩,因此氧化鎂覆蓋層結構的垂直磁性異向能高於坦覆蓋層結構,而在我們計算FePt/MgO結構中鉑氧接面型態結構的垂直磁性異向能高於鐵氧接面結構垂直磁性異向能。
    People have found that electron transportation is effected by spin affection in magnetic materials in recent year. This phenomenon was used generally in magneto resistive random-access memory. In this thesis, we use first-principle method to calculate physical characteristics of magnetic tunnel junction such as band structure. We simulate multi-thin film structure, especially for MgO barrier. We use iron or FePt as ferromagnetic layer with barrier for supercell structure. We also calculate for superlattice Ta or MgO capping on ferromagnetic at Fe/MgO structure with vacancy. We use Jullier model to calculate Tunnel magneto resistance ratio by analyzing density of state at Fermi level result. We found that in Fe/MgO structure, when ferromagnetic layer number increase, tunnel magnetoresistance ratio will decrease. In FePt/MgO structure, iron oxide terminate configuration have larger tunnel magnetoresistance than platinum oxygen terminate. In superlative with capping structure, tantalum element capping will reduce ferromagnetic polarization. Therefore, the magnetic tunnel junction structure with tantalum capping configuration tunnel magnetoresistance is less than MgO capping configuration. For perpendicular magnetic anisotropy energy calculation, spin–orbit coupling will be considered. The band structure shows the affection of different orbital. We calculate magnetic anisotropy energy with spin-orbit coupling consider, which magnetization direction lies in-plane and out of plane in Fe/MgO structure. There has an band split at Γ point, which shows that Γ point might be the direction occur perpendicular magnetic anisotropy energy. Beside, MgO and ferromagnetic layer interface layer iron has high ratio of dxz and dyz orbital density of state at Fermi level. Consequently, these two orbital plays an important role in spin–orbit interaction. In supercell configuration calculation, we found tantalum element will decrease ferromagnetic orbital moment near interface of capping layer and ferromagnetic layer. Accordingly, MgO capping has larger perpendicular magnetic anisotropy energy than tantalum capping. In FePt/MgO structure, platinum oxygen terminate configuration has larger perpendicular magnetic anisotropy energy than iron oxygen terminate configuration.
    Reference: 1. W. Thomson, Proc. Royal Soc. London,Vol. 8, (1856-1857), pp.546-550
    2. M. Julliere “Tunneling between ferromagnetic films.” Physics Letters A 54(3): 225-226(1975).
    3. T. Miyazaki, N. Tezuka “Giant magnetic tunneling effect in Fe/AlzO3/Fe junction” Journal of Magnetism and Magnetic Materials 139 L231-L234(1995)
    4. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey “Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions”. Phys. Rev. Lett. 74 (16): 3273–3276 (1995).
    5. S. S. P. Parkin, C. Kaiser, A. Panchula, P.M Rice, B. Hughes ,M. Samant ,S.H. Yang “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”. Nat. Mat. 3 (12): 862–867(2004).
    6. W. H. Butler, X.G. Zhang, T. C. Schulthess, and J. M. MacLaren “Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches”. Phys. Rev. B 63 (5): 054416.J (2001).
    7. J. Mathon and A. Umerski “Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction”. Phys. Rev. B 63 (22): 220403(2001).
    8. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando “Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions”. Nat. Mat. 3 (12): 868–871(2004).
    9. H. X. Yang, J. H. Lee, M. Chshiev, A. Manchon, K. H. Shin, B. Dieny “First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces” Phys. Rev. B 84, 054401 (2011)
    10. J.M.D. Teresa, A. Barthélémy, A. Fert, J.P. Contour, F. Montaigne, P. Seneor” Role of Metal-Oxide Interface in Determining the Spin Polarization of Magnetic Tunnel Junctions” Science 286 no. 5439 pp. 507-509 (1999)
    11. P. M. Tedrow and R. Meservey (1971). “Direct Observation of Spin-State Mixing in Superconductors.” Physical Review Letters 27(14): 919-921.
    12. D .Wang, C.Nordman ,J. Daughton , Z. Qian and J. Fink 2004 IEEE Trans. Magn. 40 2269.
    13. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura and H. Ohno “Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature” Appl. Phys. Lett. 93, 082508 (2008).
    14. P.W.T. Pong, and W. F. Egelhoff “Enhancement of Tunneling Magnetoresistance by Optimization of Capping Layer Thicknesses in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions”. Appl. Phys, vol. 105, 07C915 (2009)
    15. J. V. Vleck, “Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group”. Physical Review 41: 208 (1932).
    16. X.G. Zhang, W. H. Butler “Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunneling junctions” Phys. Rev. B 70, 172407 (2004)
    17. G. Kresse and J. Hafner ” Ab initio molecular dynamics for open-shell transition metals” Phys. Rev. B 48, 13115 (1993).
    18. G. Kresse and J.Furthmüller "Efficient iterative schemes for ab Initio total-energy calculations using a plane-wave basis set", Phys. Rev. B 54, 11169 (1996).
    19. G. Kresse and J. Furthmuller, J. Comput. Mater. Sci. 6, 15 (1996).
    20. P. Hohenberg, and W. Kohn, Phys. Rev. 136 (1964) B864.
    21. W. Kohn and L. J Sham” Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140 (1965) A1133
    22. E. P. Wigner,” On the Interaction of Electrons in Metals” Phys. Rev. 46 (1934) 1002.
    23. L. Hedin, and B. I. Lundqvist, J. Phys. C4 (1971) 2064.
    24. H. X. Yang, M. Chshiev, A. Kalitsov, A. Schuhl , W. H. Butler, “Effect of structural relaxation and oxidation conditions on interlayer exchange coupling in Fe|MgO|Fe tunnel junctions” Appl. Phys. Lett 96, 262509 (2010).
    25. http://www.asdn.net/asdn/electronics/spintronics.shtml.
    26. http://electrons.wikidot.com/density-of-states
    27. T. Moriyama, C. Wang, W.G Zhang, X. Xiao, Q. John, “Tunneling magnetoresistance in (001)-oriented FeCo/MgO/FeCo magnetic tunneling junctions grown by sputtering deposition” Appl. Phys. Lett. 88, 222503 (2006)
    28. S. Yuasa and D. Djayaprawira, “Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier”J. Phys. D: Appl. Phys. 40, R337(2007).
    29. S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, and H. Ohno “Dependence of tunnel magnetoresistance on ferromagnetic electrode materials in MgO-barrier magnetic tunnel junctions”, J. Magn. Magn. Matter., vol. 310(2007)
    30. P. J. Chang, J. H. Lee, S. G. Youn, C. S. Yoon, C. K. Kim, and O. Song, Mater. Sci. Eng., B 86, 48 2001.
    31. Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, “Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier” Appl. Phys. Lett. 90, 212507 (2007)
    32. U. Bauer, M. Dabrowski, M. Przybylski, and J. Kirschner,” Experimental confirmation of quantum oscillations of magnetic anisotropy in Co/Cu(001)”Phys. Rev. B84, 144433 (2011).
    33. H. Kubota, S. Ishibashi, T. Saruya, T. Nozaki, A. Fukushima, K. Yakushiji, K. Ando, Y. Suzuki, and S. Yuasa , “Enhancement of perpendicular magnetic anisotropy in FeB free layers using a thin MgO cap layer”Appl. Phys 111, 07C723 (2012)
    34. D.S. Wang, R. Wu, and A. J. Freeman, “First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model” Phys. Rev. B47, 14932(1993).
    35. S. Wang, R. Wu, and A. J. Freeman, J. Magn. Mater. 129, 237 (1994)
    36. P. Bruno,” Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers” Phys. Rev. B 39, 865(1989)
    37. P. V. Ong, N. Kioussis, P. K. Amiri, J. G Alzate, K. L. Wang, G. P. Carman, J. Hu, and R. Wu “Electric field control and effect of Pd capping on magnetocrystalline anisotropy in FePd thin films: A first-principles study” Phys. Rev. B 89, 094422 (2014)
    38. J. C. Tung and G. Y. Guo, “Magnetic moment and magnetic anisotropy of linear and zigzag 4d and 5d transition metal nanowires: First-principles calculations”, Phys. Rev. B 81, 094422(2010)
    39. O. Hjortstam, and K. Baberschke, J. M. Wills, B. Johansson, and O. Eriksson” Magnetic anisotropy and magnetostriction in tetragonal and cubic Ni “Phys. Rev. B 55, 15026(1997)
    40. G. C. Fletcher, “Calculations of the First Ferromagnetic Anisotropy Coefficient, Gyromagnetic Ratio and Spectroscopic Splitting Factor for Nickel” Proc. Phys. Soc. London, Sect. A 67, 505 (1954)
    41. T. I Cheng, C. W Cheng, G. Chern” Perpendicular magnetic anisotropy induced by a cap layer in ultrathin MgO/CoFeB/Nb” Appl. Phys. Lett. 112, 033910 (2012)
    Description: 碩士
    國立政治大學
    應用物理研究所
    100755015
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1007550154
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback