English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51574276      Online Users : 920
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/69618


    Title: 線性迴歸模式具測量誤差下控制問題之研究
    Other Titles: Control Problem for Linear Regression Models with Measurement Errors.
    Authors: 陳麗霞
    Contributors: 統計學系
    Keywords: 最小平方確定均等;線性迴歸;測量誤差;預測期望損失;Gibbs抽樣;蒙地卡羅最小化
    Date: 1997
    Issue Date: 2014-09-02 17:32:02 (UTC+8)
    Abstract: 本研究旨在探討迴歸模式之解釋變數存在測量誤差時,如何配置解釋變數的值,以使得在某一準則之下,下一個反應變數與其目標值的差異為最小。我們首先討論簡單線性迴歸架構下,最小平方確定等價(LSCE)控制法則的漸近特性。接著以貝氏架構闡釋如何以Gibbs抽樣法估計下一個反應變數的預測期望損失(PEL),並且選取使PEL為最小的解釋變數值為貝氏控制的配置值。當貝氏控制的解析形式不存在時,則以蒙第卡羅最小化法估計之,並討論貝氏控制估計氏的漸近性質。<
    In this research, we discuss how to select settings of a regressor when it is subject to measurement errors, in order to minimize the difference between the next response and its target under certain criterion. We first discuss the asymptotic behaviors of the least squares certainty equivalence (LSCE) control rule. Then based on the Bayesian framework, we illustrate how to estimate the predictive expected loss (PEL) via Gibbs sampling for the next response. The Bayes control rule is the one minimize the PEL. When the analytical form of the Bayes rule is not available, then Monte Carlo minimization is employed to find a minimizer of the estimated PEL, and the asymptotic properties of such minimizer is studied.<
    Relation: 行政院國家科學委員會
    計畫編號NSC86-2115-M004-007
    Data Type: report
    Appears in Collections:[統計學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2810View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback