English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52167371      Online Users : 606
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/69598


    Title: 有關時間序列模型選取一些重要問題之研究
    Other Titles: On Some Important Model Selection Problems for Time Series Modes.
    Authors: 鄭天澤;劉瑞芝;廖寶珠
    Contributors: 統計研究所
    Keywords: 模式選取;單位根檢定;雙線性模型
    Model selection;Unit root test;Bilinear model
    Date: 1993
    Issue Date: 2014-09-02 17:30:53 (UTC+8)
    Abstract: 時間序列分析中平穩線型模式之模式選取(Model selection)問題,也就是ARMA(p,q)模式中p與q的選取,一直是個重要且困難的主題,因此吸引了許多統計學者與經濟學者的注意,而致力於這方面的研究。自Box與Jenkins (1970)提出以ACF及PACF作為選模的方法後,即不斷地有新的選模準則被提出或對現有的準則作進一步的修正,其中較著名者有Akaike(1977)的AIC(An information criterion),Schwarz(1978)與Rissanen(1978)的BIC(Bayesian information criterion)以及Hannen與Quinn(1979)的HQ Criterion以及Pukkila et al.(1990)所提出的選模方法(以下簡稱PKK選模法)。 近年來,有關非平穩模式與雙線型模式的模式選取問題也漸漸受到重視,而有各種方法的提出,如針對非平穩模式的Dickey-Fuller(DF)單位根檢定,Subba Rao(1981)的巢狀搜尋選模法。本文藉模擬資料分析來比較上述各種選模法之選模能力,並歸訥出:若序列之真實模式非平穩時,宜先以Dickey-Fuller(DF)單位根檢定決定差分次數後,再以PKK選模法決定p、q的值;對於雙線性模式,則以Subba Rao(1981)的巢狀搜尋選模法之選模能力最佳。此外,我們也從貝氏統計觀點提出自回歸模式的選模法,並以模擬資料驗證其選模能力。
    The problem of model selection for stationary linear time series models has been an attractive but difficult one in time series analysis in the past twenty years. Several criteria were raised and justified. These include AIC (An Information Criterion) raised by Akaike (1977), BIC (Bayesian Information Criterion) by Schwarz (1978) and Rissanen (1978). HQ criterion by Hannen & Quinn (1979) and the PKK method, suggested by Pukkila et al. (1990). Recently, there have been a lot of researchers working on model selection problem for nonstationary or nonlinear (bilinear, in particular) models, several criteria such as Dickey-Fuller (1977)`s unit root test for nonstationary models, Subba Rao (1981)` nested search procedure for bilinear models are suggested and used. In this article, we compare the performance of the above model selection criteria both for nonstationary and bilinear models using simulated data. It is found that when the true model is nonstationary, unit root test together with PKK method would provide the best performance. On the other hand, when the true model is bilinear, Subba Rao`s nested search procedure gives better results than PKK method, AIC or BIC criteria did. A Bayesian model selection procedure for autoregressive models is also suggested and evaluated through Monte Carlo method.
    Relation: 行政院國家科學委員會
    計畫編號NSC82-0208-M004-001
    Data Type: report
    Appears in Collections:[統計學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2849View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback