English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113393/144380 (79%)
Visitors : 51233364      Online Users : 921
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/69548


    Title: 我國股價指數報酬率之機率分配研究
    Other Titles: The Probability Distribution of Taiwan`s Stock Index Return
    Authors: 李桐豪
    Contributors: 銀行學系
    Keywords: 股價指數;股票報酬;機率分配;柏拉圖穩定分配;韋伯分配;指數分配
    Stock index;Stock return;Probability distribution;Stable Paretian distribution;Weibull distribution;Exponential distribution
    Date: 1997
    Issue Date: 2014-09-02 09:00:43 (UTC+8)
    Abstract: 本研究之目的在以實證方式探討我國加權股價指數日報酬率之機率分配屬性。Mantegna及Stanley提出股價報酬機率為時間距離差之線性函數,並藉以估計穩定分配的相關參數值。本研究則使用此一方法配適台灣加權股價指數日報酬率資料,結果卻發現所估計出的係數既不穩定也不合理。但是,我們若根據DuMouchel提議以Bergstrom與Feller的概似估計法,直接估計台灣加權股價指數日報酬率,而且修改使用穩定與指數混合分配的假設,結果所得到的參數估計值卻能部分支持穩定分配假設的可行性,估計指數.alpha.介於1.50與2之間。可是,在估計參數穩定性上則未如Mantegna與Stanley對美國股市資料所歸納出的結果。至於韋伯分配的假設,我們也發現參數估計值在穩定性上具有其優勢。在.zeta./sub 0/設為0的條件下,所估計出的參數具有相對的穩定性。根據Mittnik及Rachev,韋伯分配亦為穩定分配,所以韋伯分配估計參數的穩定性應有助於其作為其他財務研究之基礎假設。最後,我們若以估計參數的穩定性作為實證分配選擇的標準,則可以發現GARCH模型雖然具有大尾分配的特質,但是估計的參數值與觀察區間的長短沒有一定的關係。這意味GARCH模型的使用純為資料的配適而設計,因此與穩定分配的觀念不甚契合。
    The purpose of this research project is to investigate the nature of the probability distribution of Taiwan`s stock index return. Mantegna and Stanley (1995) proposed that the probability of stock return at mean zero is a linear function of the sampling interval, and estimated the S&P500 return accordingly. They found that the probability distribution of S&P500 return is following a strict stable rule. We tried to use the same method with daily Taiwan stock index return, and found unreasonable parameter estimates. We then use Bergstrom and Feller`s expansion series to approximate the unknown probability density of stable Paretian distribution, as mentioned by DuMouchel (1971). We also adopted Mantegna and Stanley`s suggestion to mix the stable distribution with an exponential distribution. AS a result, we found some evidence to support the stable distribution assumption with .alpha. index between 1.50 and 2. The stability of parameter estimates, however, is not the same as indicated by the S&P500 data. We also found that the parameter estimates of Weibull distribution, when .zeta./sub 0/ is equal to 0, has superiority in terms of stability. According to Mittnik and Rachev, Weibull distribution is also a stable distribution. We, therefore, think Weibull distribution a potential candidate to be used as the basic distribution assumption for other financial models. Finally, we used the often cited GARCH model to fit the stock index return, and found parameter estimates are trend-less. Although GARCH model may create fat-tailed distribution, the trend-less and unpredictable parameter estimates do not give us a hint of the moving direction of parameters, if we increase the sampling interval of stock index return. In that sense, GARCH model seems not fitting the concept of stable rule well.
    Relation: 行政院國家科學委員會
    計畫編號NSC86-2415-H004-012
    Data Type: report
    Appears in Collections:[金融學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML21098View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback