政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/69437
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51599755      Online Users : 1026
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/69437


    Title: 以網路評論分析多世代產品市場變化─以智慧型手機為例
    Using the user generated content to analyze the change of multiple generation product markets – take the smartphone as example
    Authors: 黃彥騰
    Huang, Yen Teng
    Contributors: 唐揆
    黃彥騰
    Huang, Yen Teng
    Keywords: 網路評分
    產品面項
    多世代產品
    Date: 2013
    Issue Date: 2014-09-01 13:45:05 (UTC+8)
    Abstract: 隨著網路的興起,有越來越多的消費者內容的產生,而該內容成為了口碑,傳達給其他消費者,廠商所未提及的資訊,此外也提供了材料給予廠商進行分析。然而此類的資料往往是非結構性的資訊,過去有許多的論文專注於在用情緒分析或詞性分析的方法,來分析消費者所留下來的評論,希望藉此得到消費者針對每個商品面項的評論進行分析。然而該方法會面臨的問題就是遺漏植過多的問題。
    因此本篇論文使用跟過去不同的資料來源,透過分析商品的不同面項,來得到些對廠商有益處的資訊,其中所使用的標的物為智慧型手機,一方面該產品為近幾年主要興起的商品,能透過分析的過程了解市場或消費者的變化,另一方面,該商品的面項多,且包含隱性(如易用程度、設計感)等,也有較為顯性的面項(如電池、通話品質)等。因此能夠以此去了解各面項的差異,與消費者的觀感等。
    而本論文的研究包括透過因素分析縮減各面項,而取得面項的一致性,此外透過面項的分佈了解市場上消費者的變化,此外透過分析單一產品,以及兩世代產品,或與競爭產品之間的關係,能夠得到消費者針對面項升級時的反應,以及未來廠商可能可以的發展方向等。
    總之,本篇論文提供一個新的分析來源,用最基礎的分析方法亦可取得市場的資訊與消費者的反應,廠商能以此來獲得些資訊,而未來的研究亦能在此基礎之上,進行深入的研究與探討。
    Reference: [1]林沛盈(2011)隱藏意見萃取-辨別多世代商品之關鍵特色
    [2]Fu, X., Liu, G., Guo, Y., & Wang, Z. (2012). Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon. Knowledge-Based Systems.
    [3] Gu, B., Park, J., & Konana, P. (2012). Research Note—The Impact of External Word-of-Mouth Sources on Retailer Sales of High-Involvement Products. Information Systems Research, 23(1), 182-196.
    [4] Zhang, K., Narayanan, R., & Choudhary, A. (2010, June). Voice of the customers: mining online customer reviews for product feature-based ranking.
    In3rd Workshop on Online Social Networks.
    [5] Yu, J., Zha, Z. J., Wang, M., & Chua, T. S. (2011, June). Aspect Ranking:
    Identifying Important Product Aspects from Online Consumer Reviews.
    In ACL(pp. 1496-1505).
    [6] Zhang, W., Xu, H., & Wan, W. (2012). Weakness Finder: Find product
    weakness from Chinese reviews by using aspects based sentiment analysis.
    Expert Systems with Applications
    [7] Chen, L., Qi, L., & Wang, F. (2012). Comparison of feature-level learning methods for mining online consumer reviews. Expert Systems with Applications,
    Description: 碩士
    國立政治大學
    企業管理研究所
    101355041
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1013550413
    Data Type: thesis
    Appears in Collections:[Department of Business Administation] Theses

    Files in This Item:

    File SizeFormat
    041301.pdf1282KbAdobe PDF2157View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback