|
English
|
正體中文
|
简体中文
|
Post-Print筆數 : 27 |
Items with full text/Total items : 113648/144635 (79%)
Visitors : 51571595
Online Users : 893
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/69159
|
Title: | Efficient and Robust Schemes for Sensor Data Aggregation Based on Linear Counting |
Authors: | 陳良弼 Fan,Yao-Chung;Chen,Arbee L.P. |
Contributors: | 資科系 |
Date: | 2010-11 |
Issue Date: | 2014-08-21 15:10:27 (UTC+8) |
Abstract: | Sensor networks have received considerable attention in recent years, and are often employed in the applications where data are difficult or expensive to collect. In these applications, in addition to individual sensor readings, statistical aggregates such as Min and Count over the readings of a group of sensor nodes are often needed. To conserve resources for sensor nodes, in-network strategies are adopted to process the aggregates. One primitive in-network aggregation strategy is the tree-based aggregation, where the aggregates are computed from leaves to the root of a spanning tree over a sensor network. However, a shortcoming with the tree-based aggregation is that it is not robust against communication failures, which are common in sensor networks. One of the solutions to overcome this shortcoming is to enable multipath routing, by which each node broadcasts its reading or a partial aggregate to multiple neighbors. However, multipath routing-based aggregation typically suffers from the problem of overcounting sensor readings. In this study, we propose two schemes based on the linear counting technique to deal with the overcounting problem. These two schemes process aggregates by statically and dynamically, respectively, allocating space for the use of the linear counting technique. Both schemes provide the same accuracy guarantee but involve different communication costs. Through extensive experiments with real-world and synthetic data, we demonstrate the efficiency and effectiveness of using these two schemes as solutions for processing aggregates in a sensor network. The experiments also show that the scheme that dynamically allocates the space often outperforms the other one in terms of energy conservation since it requires less space to satisfy an accuracy constraint. |
Relation: | Parallel and Distributed Systems,21(11),1675-1691 |
Data Type: | article |
DOI 連結: | http://dx.doi.org/10.1109/TPDS.2010.33 |
DOI: | 10.1109/TPDS.2010.33 |
Appears in Collections: | [資訊科學系] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
index.html | | 0Kb | HTML2 | 1130 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|
著作權政策宣告 Copyright Announcement1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.
2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(
nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(
nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.