政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/69113
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50943029      Online Users : 957
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/69113


    Title: Discovering Color Styles from Fine Art Images of Impressionism
    Authors: 沈錳坤
    Shan,Man-Kwan;Chiu,Shih-Chuan
    Contributors: 資科系
    Date: 2009
    Issue Date: 2014-08-21 12:04:38 (UTC+8)
    Abstract: Content-based image retrieval (CBIR) has attracted much interest since the last decade. Finding painting styles from fine art images is useful for CBIR. However, little research has been done on the painting style mining. In this paper, we investigated the color style mining technique for fine art of Impressionism. Three design issues for the color style mining are the feature extraction, the feature representation, and the style mining algorithm. For the feature extraction and presentation, dominate colors, adjacent color combinations and some MPEG-7 color descriptors, are utilized to represent the color features. Above all, we utilize the spatial data structure, 2D string, to represent color layout descriptor. For the style mining algorithms, we proposed a two-stage color style mining scheme. The first stage discovers the common properties of paintings of the same style. The second stage discovers the discriminative properties among styles. The experiment on the art work of European Impressionist was conducted. The performance of effectiveness is measured by the classification accuracy of the proposed style mining scheme. The classification accuracy ranges from 70% to 90%.
    Relation: International Journal of Computer Science and Security,3(4)
    Data Type: article
    Appears in Collections:[Department of Computer Science ] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    2009.pdf375KbAdobe PDF2545View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback