English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52052966      Online Users : 601
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/69112
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/69112


    Title: A Recommendation Mechanism on OLAP Operations Based on Social Network
    Other Titles: 整合社群關係的 OLAP 操作推薦機制
    Authors: 陳信固;李蔡彥
    Chen,H.K.;Li,Tsai-yen
    Contributors: 資科系
    Keywords: 社群網路分析;推薦機制;社群偵測;商業智慧;網絡中心性
    Social Network Analysis;Recommendation Mechanism;Community Detection;Business Intelligence;Network Centrality
    Date: 2012-05
    Issue Date: 2014-08-21 11:04:02 (UTC+8)
    Abstract: 近幾年在金融風暴及全球競爭等影響下,企業紛紛導入商業智慧平台,提供管理階層可簡易且快速的分析各種可量化管理的關鍵指標。但在後續的推廣上,經常會因商業智慧系統提供的資訊過於豐富,造成使用者在學習階段無法有效的取得所需資訊,導致商業智慧無法發揮預期效果。本論文以使用者在商業智慧平台上的操作相似度進行分析,建立相對於實體部門的凝聚子群,且用中心性計算各節點的關聯加權,整合至所設計的推薦機制,用以提升商業智慧平台成功導入的機率。經模擬實驗的證實,在推薦機制中考慮此因素會較原始的推薦機制擁有更高的精確度。
    In recent years, enterprises are facing financial turmoil, global competition, and shortened business cycle. Under these influences, enterprises usually implement the Business Intelligence platform to help managers get the key indicators of business management quickly and easily. In the promotion stage of such Business Intelligence platforms, users usually give up using the system due to huge amount of information provided by the BI platform. They cannot intuitively obtain the required information in the early stage when they use the system. In this study, we analyze the similarity of users’ operations on the BI platform and try to establish cohesive subgroups in the corresponding organization. In addition, we also integrate the associated weighting factor calculated from the centrality measures into the recommendation mechanism to increase the probability of successful uses of BI platform. From our simulation experiments, we find that the recommendation accuracies are higher when we add the clustering result and the associated weighting factor into the recommendation mechanism.
    Relation: Appeared in Proceeding of the 2012 International Conference on Information Management, 2012.
    Data Type: conference
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    201205.pdf1581KbAdobe PDF2749View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback