English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50804082      Online Users : 770
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/68324


    Title: 利用共同因子建立多重群體死亡率模型
    Using Principal Component Analysis to Construct Multi-Group Mortality Model
    Authors: 鄭惠恒
    Cheng, Hui Heng
    Contributors: 王儷玲
    蔡政憲

    Wang, Li Ling
    Tsai, Cheng Hsien

    鄭惠恒
    Cheng, Hui Heng
    Keywords: 死亡率改善
    Lee-Carter 死亡率模型
    主成分分析法
    共同因子與群體死亡率預測
    Mortality Improvement
    Lee-Carter Model
    Principal Component Analysis
    Common Factor Mortality Forecasting
    Multi-Group Life Expediency
    Date: 2013
    Issue Date: 2014-08-06 13:22:40 (UTC+8)
    Abstract: 對於商業保險公司和政府單位而言,死亡率的改善和未來死亡率的預估一直是一大重要議題。特別是對於退休金相關的社會保險、勞退或是商業年金、壽險等等,如何找尋一個準確的預估模式對未來的死亡率改善情況進行預測,並釐訂合理的保費及提列適當的準備金,是對於一個保險制度能否永續經營的重要因素。過去所使用的配適方法,大多僅以單一群體的過去資料輔助未來的預測,例如 Li and Carter (1992)所提出的 Lee-Carter Model,或是 Bell (1997)使用主成分分析法 (Principal Component Analysis, PCA)等僅針對單一群體本身變數進行分析之方式。然而綜觀全球死亡率改善趨勢,可發現國與國間、組與祖間雖有不同,但仍具備共同的趨勢。因此在考慮未來的死亡率配適方面,應加入組與組間的共同因子 (common factors) 進行考量。 Li and Lee (2005)曾提出 Augmented Lee-Carter Model,即對原本的Lee-Carter Model進行修正,加入共同因素項,並且得到更好的預測效果。
    本文則採用考慮共同因子之主成分分析原理建構多重群體死亡率模型,即透過主成分分析法,同時考慮不同群體間的死亡率,並以台灣男性和女性1970年至2010年的死亡率資料,做為兩個子群體進行分析。本文使用之主成分分析法模式,和 Lee-Carter Model (Li and Carter, 1992) 和 Augmented Lee-Carter Model (Li and Lee, 2005),以MAPE法對個別的預測能力進行分析,並得出採用PCA的模式,在預測男性短年期(5年)內的預估能力屬精確(MAPE 介於10%~20%之間),然而在長期預估下容易失準,且所有使用的模型,在配適台灣資料時皆發生無法準確預估嬰幼兒期(0~3歲)和老年期(80歲以上)之情形。本文並以所有模型預估之死亡率計算保險公司之準備金與保費提列,並與第五回經驗生命表進行比較。
    For governments and life insurance companies, mortality rates are one of the key factors in determining premiums and reserves. Ignoring or miscalculating mortality rates might have negative influences in pricing. However, most of the mortality models do not consider the common trends between groups.

    In this article, we try to construct the mortality structure which considering common trends of multi-groups populations with principal component analysis (PCA) method. We choose 9 factors to set up our model and fit with the actual data in Taiwan’s gender mortality. We also compare the Lee-Carter Model (Lee and Carter, 1992) and the augmented Lee-Carter Model (Li and Hardy, 2012) with our common factors PCA model, and we find that the PCA model has the least MAPE than other model in five years forecasting in both genders.

    After finishing basic analysis, we use the mortality data of Taiwan (1970 to 2010) from human mortality database to construct the life expectancy model. We adopt the same criteria to choose the components we need. We also compare the level premium and reserves by different forecasting mortality rates. All of the models indicate life insurance companies to provide higher reserves and level premium than using the 5th TSO experience mortality rare. We will do following research by using company-specific data to construct unique life expectancy model.
    Reference: 1 BELL, William R. Comparing and assessing time series methods for forecasting age-specific fertility and mortality rates. JOURNAL OF OFFICIAL STATISTICS-STOCKHOLM-, 1997, 13: 279-304.

    2 Cairns, A. J. G., D. Blake, and K. Dowd, 2006a, A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration, Journal of Risk and Insurance, 73: 687-718.

    3 Dahl, M., 2004, Stochastic Mortality in Life Insurance: Market Reserves and Mortality-linked Insurance Contracts, Insurance: Mathematics and Economics, 35: 113-136.

    4 Dahl, M., and T. Møller, 2005, Valuation and Hedging of Life Insurance Liabilities with Systematic Mortality Risk, In the Proceedings of the 2005 International AFIR Colloquium, Zurich, Available online at http://www.afir2005.ch.

    5 Hyndman, R. J. and S. Ullah, 2007, Robust Forecasting of Mortality and Fertility Rates: A Functional Data Approach, Computational Statistics and Data Analysis, 51, 4942-4956.

    6 JARNER, Søren Fiig; KRYGER, Esben Masotti. Modelling adult mortality in small populations: The SAINT model. Astin Bulletin, 2011, 41.02: 377-418.

    7 RENSHAW, Arthur E.; HABERMAN, Steven. A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 2006, 38.3: 556-570.

    8 Stallard, E., 2006, Demographic Issues in Longevity Risk Analysis, Journal of Risk and Insurance, 73: 575-609.

    9 LI, Nan; LEE, Ronald. Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography, 2005, 42.3: 575-594.

    10 Lee, R. D. and L. R. Carter, 1992, Modeling and Forecasting U.S. Mortality, Journal of the American Statistical Association, 87: 659-675.
    11 Lee, R. D. and T. Miller, 2001, Evaluating the Performance of the Lee-Carter Mortality Forecasts, Demography, 38: 537-549.

    12 Li, J. S. H., & Hardy, M. R, 2011, Measuring basis risk in longevity hedges. North American Actuarial Journal, 15(2), 177-200.

    13 LEWIS, Colin David. Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. London: Butterworth Scientific, 1982.

    14 McNown, R. and A. Rogers, 1989, Forecasting Mortality: A Parameterized Time Series Approach, Demography, 26: 645-660
    15 Plat, R., 2009, On Stochastic Mortality Modeling, Insurance: Mathematics and Economics, 45, 393-404.

    16 Murray, C. J. L., B. D. Ferguson, A. D. Lopez, M. Guillot, J. A. Salomon, and O. Ahmad, 2003, Modified Logit Life Table System: Principles, Empirical Validation, and Application, Population Studies, 57: 165-182.

    17 SHERRIS, Michael; NJENGA, Carolyn. Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility. UNSW Australian School of Business Research Paper, 2009, 2009ACTL08.

    18 YANG, Sharon S.; YUE, Jack C.; HUANG, Hong-Chih. Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models. Insurance: Mathematics and Economics, 2010, 46.1: 254-270.

    19 Yue, C. S. J., & Huang, H. C., 2011. A Study of Incidence Experience for Taiwan Life Insurance. The Geneva Papers on Risk and Insurance-Issues and Practice, 36(4), 718-733.
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    101358002
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101358002
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File SizeFormat
    800201.pdf1072KbAdobe PDF2360View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback