政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/68267
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51279171      線上人數 : 887
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/68267
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/68267


    題名: 處理含有雜訊之點雲骨架的生成
    Dealing with Noisy Data for the Generation of Point Cloud Skeletons
    作者: 林逸芃
    Lin, Yi Peng
    貢獻者: 徐國偉
    Hsu, Kuo Wei
    林逸芃
    Lin, Yi Peng
    關鍵詞: 雜訊
    點雲
    骨架
    Noise
    Point cloud
    Skeleton
    日期: 2013
    上傳時間: 2014-08-06 11:47:19 (UTC+8)
    摘要: 一個視覺物體或一個三維模型的骨架,是一種可以揭示該物體或模型的拓樸結構的呈現方式,因此骨架可以被應用在諸多場合當中,例如形狀分析和電腦動畫。近年來,有許多針對從一個物體當中抽取骨架的研究工作。然而,大多數的研究著重於完整和乾淨的資料(儘管這些研究當中,有一些有將缺失值考慮在內),但在實務上,我們經常要處理不完整和不潔淨的資料,就像資料裡面可能有缺失值和雜訊。在本論文中,我們研究雜訊處理,而且我們將焦點放在針對帶有雜訊的點雲資料進行前置處理,以便生成相應物體的骨架。在我們提出的方法當中,我們首先識別可能帶有雜訊的資料點,然後降低雜訊值的影響。為了識別雜訊,我們將監督式學習用在以密度和距離作為特徵的資料上。為了降低雜訊值的影響,我們採用三角形表面和投影。這個前置處理方法是有彈性的,因為它可以搭配任何能夠從點雲資料當中抽取出物體的骨架的工具。我們用數個三維模型和多種設定進行實驗,而結果顯示本論文所提出的前置處理方法的有效性。與未經處理的模型(也就是原始模型加上雜訊)相比,在從帶有雜訊的點雲資料當中產生物體的骨架之前,如果我們先使用本論文所提出的前置處理方法,那麼我們可以得到一個包含更多原來的物體的拓撲特徵的骨架。我們的貢獻如下:第一,我們展示了機器學習可以如何協助電腦圖學。第二、針對雜訊識別,我們提出使用距離和密度做為學習過程中要用的特徵。第三、我們提出使用三角表面和投影,以減少在做雜訊削減時所需要花費的時間。第四、本論文提出的方法可以用於改進三維掃描。
    The skeleton of a visual object or a 3D model is a representation that can reveal the topological structure of the object or the model, and therefore it can be used in various applications such as shape analysis and computer animation. Over the years there have been many studies working on the extraction of the skeleton of an object. However, most of those studies focused on complete and clean data (even though some of them took missing values into account), while in practice we often have to deal with incomplete and unclean data, just as there might be missing values and noise in data. In this thesis, we study noise handling, and we put our focus on preprocessing a noisy point cloud for the generation of the skeleton of the corresponding object. In the proposed approach, we first identify data points that might be noise and then lower the impact of the noisy values. For identifying noise, we use supervised learning on data whose features are density and distance. For lowering the impact of the noisy values, we use triangular surfaces and projection. The preprocessing method is flexible, because it can be used with any tool that can extract skeletons from point clouds. We conduct experiments with several 3D models and various settings, and the results show the effectiveness of the proposed preprocessing approach. Compared with the unprocessed model (which is the original model with the added noise), if we apply the proposed preprocessing approach to a noisy point cloud before using a tool to generate the skeleton, we can obtain a skeleton that contains more topological characteristics of the model. Our contributions are as follows: First, we show how machine learning can help computer graphics. Second, we propose to use distance and density as features in learning for noise identification. Third, we propose to use triangular surfaces and projection to save execution time in noise reduction. Fourth, the proposed approach could be used to improve 3D scanning.
    參考文獻: [1] Junjie Cao, Tagliasacchi A., Olson M., and Hao Zhang. 2010. “Point Cloud Skeletons via
    Laplacian Based Contraction,” Shape Modeling International Conference (SMI): 187-197.
    [2] S. Wang, J. Wu, M. Wei, and X. Ma. 2012. “Robust curve skeleton extraction for vascular
    structures,” Graphical Models 74(4):109-120.
    [3] M. Raptis, D. Kirovski, and H. Hoppe. 2011. “Real-time classification of dance gestures
    from skeleton animation,” Eurographics Symposium on Computer Animation: 147-156.
    [4] R. Schnabel, R. Wessel, R. Wahl, and R. Klein. 2008. “Shape Recognition in 3D
    Point-Clouds,” The International Conference in Central Europe on Computer Graphics,
    Visualization and Computer Vision. Vol.2.
    [5] Aleksey G., Vladimir G. K., and Thomas Funkhouser. 2009. “Shape-based recognition of
    3D point clouds in urban environments,” IEEE 12th International Conference on
    Computer Vision: 2154-2161.
    [6] Alexander V., Roman S., and Konrad Schindler. 2012. “Implicit shape models for object
    detection in 3d point clouds,” ISPRS Annals of the Photogrammetry, Remote Sensing and
    Spatial Information Sciences. Volume I-3.
    [7] Marco Livesu, Fabio Guggeri, and Riccardo Scateni. 2012. “Reconstructing the
    Curve-Skeletons of 3D Shapes Using the Visual Hull,” IEEE Transactions on
    Visualization and Computer Graphics 18(11): 1891-1901.
    [8] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and
    T. R. Evans. 2001. “Reconstruction and representation of 3D objects with radial basis
    functions,” SIGGRAPH `01 Proceedings of the 28th annual conference on Computer
    graphics and interactive techniques: 67-76, 2001.
    [9] Michael W, Philipp J., Qixing H., Martin B., and Leonidas Guibas. 2007.
    “Reconstruction of Deforming Geometry from Time-Varying Point Clouds,” SGP `07
    Proceedings of the fifth Eurographics symposium on Geometry processing: 49-58.
    [10] D. F. Lu, H. K. Zhao, M. Jiang, S. L. Zhou, and T. Zhou. 2005 “A Surface
    Reconstruction Method for Highly Noisy Point Clouds,” Variational, Geometric, and
    Level Set Methods in Computer Vision: 283-294
    [11] N. J. Mitra, and A. Nguyen. 2003. “Estimating surface normals in noisy point cloud data,”
    SCG `03 Proceedings of the nineteenth annual symposium on Computational geometry:
    322-328.
    [12] J. C. Carr, R. K. Beatson, T. J. Mitchell, W. R. Fright, B. C. McCallum, and
    B. C. McCallum. 2003. “Smooth surface reconstruction from noisy range data,”
    Proceedings of the 1st international conference on Computer graphics and interactive
    techniques: 119-126.
    [13] H. K. Jankowski, and L. I. Stanberry. 2012. “Identifying Skeleton Curves in Noisy Data,”
    Communications in Statistics - Simulation and Computation 41(6): 852-864.
    [14] Alexander Bucksch, and Roderik Lindenbergh. 2008. “CAMPINO — A skeletonization
    method for point cloud processing,” ISPRS Journal of Photogrammetry & Remote Sensing
    63: 115-127.
    [15] Wei Jiang, Kai Xu, Zhi-Quan Cheng, Ralph R. Martin, and Gang Dang. 2013. “Curve
    skeleton extraction by coupled graph contraction and surface clustering,” Graphical
    Models 75 :137-148.
    [16] Mathieu B., Saïda B., Boubakeur B., and Erwan Guillou. 2014. “Ongoing human action
    recognition with motion capture,” Pattern Recognition 47: 238-247.
    [17] Luca Rossi, and Andrea Torsello. 2014. “Coarse-to-fine skeleton extraction for high
    resolution 3D meshes,” Computer Vision and Image Understanding 118: 140-152.
    [18] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-Yee
    Lee. 2008. “Skeleton Extraction by Mesh Contraction,” ACM Transactions on Graphics,
    Vol. 27, No. 3, Article 44.
    [19] N. D. Cornea, Deborah S., and Patrick Min. 2007. “Curve-Skeleton Properties,
    Applications and Algorithms,” IEEE Transactions on Visualization and Computer
    Graphics 13(3): 530-548.
    [20] Andr´e Sobiecki, Haluk C. Yasan, Andrei C. Jalba, and Alexandru C. Telea. 2013.
    “Qualitative Comparison of Contraction-Based Curve Skeletonization Methods,”
    Mathematical Morphology and Its Applications to Signal and Image Processing, 425-439.
    [21] Clement Menier, Edmond Boyer, and Bruno Raffin. 2006. “3D Skeleton-Based Body Pose
    Recovery,” 3rd International Symposium on 3D Data Processing, Visualization and
    Transmission (DPVT `06): 389-396.
    [22] Joohyuk Lee, Hyojoo Son, Changmin Kim, and Changwan Kim. 2013. “Skeleton-based
    3D reconstruction of as-built pipelines from laser-scan data,” Automation in Construction
    35: 199-207.
    [23] Sen Wang, Jianhuang Wu, Mingqiang Wei, and Xin Ma. 2012. “Robust curve skeleton
    extraction for vascular structures,” Graphical Models 74: 109-120.
    [24] Sang Min Yoon, and Arjan Kuijper. 2013. “Human action recognition based on skeleton
    splitting,” Expert Systems with Applications 40: 6848-6855.
    [25] Lulu Chen, Hong Wei, and James Ferryman. 2013. “A survey of human motion analysis
    using depth imagery,” Pattern Recognition Letters 34: 1995-2006.
    [26] Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or. 2009. “Curve skeleton extraction
    from incomplete point cloud,” ACM Transactions on Graphics 28(3), Article 71.
    [27] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-Yee
    Lee. 2008. “Skeleton extraction by mesh contraction”, SIGGRAPH `08 27(3), No. 44.
    [28] Andrei S., Thomas L., Gil S., Sivan T., and Daniel Cohen-Or. 2007. “Interactive
    topology-aware surface reconstruction,” ACM Transactions on Graphics 26(3), No.43.
    [29] Leonard R. Herrmann. 1976. “Laplacian-isoparametric grid generation scheme,” Journal
    of the Engineering Mechanics Division 102 (5): 749–756.
    [30] Olga S., Daniel C.O., Yaron L., Marc A., Christian R., and Hans-Peter Seidel. 2004.
    “Laplacian Surface Editing,” SGP `04 Proceedings of the 2004 Eurographics/ACM
    SIGGRAPH symposium on Geometry processing: 175-184.
    [31] Andrea Tagliasacchi, Daniel Cohen-Or, and Hao Zhang. 2009. “Curve skeleton extraction
    from incomplete point cloud,” ACM Transactions on Graphics 28(3), No.71.
    [32] Lior S., Ariel S., and Daniel Cohen-Or. 2008. “Consistent mesh partitioning and
    skeletonization using the shape diameter function,” International Journal of Computer
    Graphics 24(4): 249–259.
    [33] X. Li, T. W. Woon, T. S. Tan, and Z. Huang. 2001. “Decomposing polygon meshes for
    interactive applications,” Proceedings of the 2001 symposium on Interactive 3D graphics:
    35–42.
    [34] Oliver S., Alexander B., and Hans-Peter Seidel. 2005. “Robust filtering of noisy scattered
    point data,” SPBG`05 Proceedings of the Second Eurographics / IEEE VGTC conference
    on Point-Based Graphics: 71-77.
    [35] Evangelos K., Derek N., Patricio S., and Karan Singh. 2009. “Extracting lines of curvature
    from noisy point clouds,” Computer-Aided Design 41: 282-292.
    [36] Mona Mahmoudi, and Guillermo Sapiro. 2009. “Three-dimensional point cloud
    recognition via distributions of geometric distances,” Graphical Models 71: 22-31.
    [37] Pingbo T., Daniel H., Burcu A., Robert L., and Alan Lytle. 2010. “Automatic
    reconstruction of as-built building information models from laser-scanned point clouds: A
    review of related techniques,” Automation in Construction 19: 829-843.
    [38] Yong-Jin Liu, Dong-Liang Zhang, and Matthew Ming-Fai Yuen. 2010. “A survey on CAD
    methods in 3D garment design,” Computers in Industry 61: 576-593.
    [39] H. Woo, E. Kang, Semyung Wang, and Kwan H. Lee. 2002. “A new segmentation method
    for point cloud data,” International Journal of Machine Tools & Manufacture 42: 167-178.
    [40] Tamal K. Dey, and Samrat Goswami. 2004. “Provable Surface Reconstruction from Noisy
    Samples,” Proceedings of the twentieth annual symposium on Computational geometry:
    330-339.
    [41] Facundo Mémoli, and Guillermo Sapiro. 2005. “A Theoretical and Computational
    Framework for Isometry Invariant Recognition of Point Cloud Data,” Foundations of
    Computational Mathematics 5(3): 313-347.
    [42] Wei Jiang, Kai Xu, Zhi-Quan Cheng, and Hao Zhang. 2013. “Skeleton-based intrinsic
    symmetry detection on point clouds,” Graphical Models 75: 177-188.
    [43] Luke O., Faramarz F. S., Mario C. S., and Joaquim A. Jorge. 2009. “Sketch-based
    modeling: survey,” Computers & Graphics 33: 85-103.
    [44] Peter Axelsson. 1999. “Processing of laser scanner data—algorithms and applications,”
    ISPRS Journal of Photogrammetry & Remote Sensing 54: 138-147.
    [45] Hadi Fadaifard, George Wolberg, and Robert Haralick. 2013. “Multiscale 3D feature
    extraction and matching with an application to 3D face recognition,” Graphical Models
    75: 157-176.
    [46] Gary K.L. Tam, Zhi-Quan Cheng, Yu-Kun Lai, Frank C. Langbein, Yonghuai Liu, David
    Marshall, Ralph R. Martin, Xian-Fang Sun, and Paul L. Rosin. 2013. “Registration of 3D
    Point Clouds and Meshes: A Survey From Rigid to Non-Rigid Gary,” IEEE Transactions
    on Visualization and Computer Graphics 19 (7): 1199-1217.
    [47] Mark Pauly, Niloy J. Mitra, and Leonidas J. Guibas. 2004. “Uncertainty and variability in
    point cloud surface data,” SPBG`04 Proceedings of the First Eurographics conference on
    Point-Based Graphics: 77-84.
    [48] Mincheol Yoon, Yunjin Lee, Seungyong Leea, Ioannis Ivrissimtzis, and Hans-Peter Seidel.
    2007. “Surface and normal ensembles for surface reconstruction,” Computer-Aided
    Design 39: 408-420.
    [49] Ravish Mehra, Pushkar Tripathi, Alla Sheffer, and Niloy J. Mitra. 2010. “Visibility of
    noisy point cloud data,” Computers & Graphics 34(3): 219-230.
    [50] Jean-Emmanuel Deschaud, and Francois Goulette. 2010. “A Fast and Accurate Plane
    Detection Algorithm for Large Noisy Point Clouds Using Filtered Normals and Voxel
    Growing,” Proceedings of 3D Processing, Visualization and Transmission Conference.
    [51] Iat-Fai Leong, Jing-Jing Fang, and Ming-June Tsai. 2007. “Automatic body feature
    extraction from a marker-less scanned human body,” Computer-Aided Design 39:
    568-582.
    [52] Jonathan Dinerstein, Parris K. Egbert, and David Cline. 2007. “Enhancing computer
    graphics through machine learning: a survey,” Visual Compute 23: 25-43.
    [53] Kecman, Vojislav. 2001. “Learning and Soft Computing,” MIT Press, Cambridge, MA.
    [54] Suykens, J.A.K., Van Gestel, T., De Brabanter,J., De Moor, B., and Vandewalle, Joos.
    2002. “Least Squares Support VectorMachines,” World Scientific, Singapore.
    [55] Scholkopf, B., and Smola, A.J., 2002. “Learningwith Kernels,” MIT Press, Cambridge,
    MA.
    [56] Cristianini, N., and Shawe-Taylor, J. 2000. “An Introduction to Support Vector Machines
    and Other Kernel-based Learning Methods,” First Edition (Cambridge: Cambridge
    University Press).
    [57] Mitchell, T. 1997. “Machine Learning,” McGraw Hill.
    [58] Vangelis M., Ion A., and Geogios P. 2006. “Spam Filtering with Naive Bayes - Which
    Naive Bayes?” Third Conferenceon Email and Anti-Spam.
    [59] George H. John and Pat Langley. 1995. “Estimating continuous distributions in bayesian
    classifiers” the Eleventh Conference on Uncertainty in Artificial Intelligence.
    [60] Coppersmith, D., S. J. Hong, and J. R. M.Hosking. 1999. “Partitioning Nominal Attributes
    in Decision Trees,” Data Mining and Knowledge Discovery 3: 197–217.
    描述: 碩士
    國立政治大學
    資訊科學學系
    101753025
    102
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0101753025
    資料類型: thesis
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    302501.pdf7470KbAdobe PDF2382檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋