English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52205446      Online Users : 585
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/67738


    Title: 脆弱性Weibull迴歸模式之貝氏推論
    Other Titles: Bayesian Inference for Weibull Regression Models with Frailty
    Authors: 陳麗霞
    Contributors: 統計系
    Keywords: 脆弱性,異質性,貝氏生存統計分析,Gibbs抽樣,正比危險函數,Weibull迴歸模式
    Frailty heterogeneity,Bayesian survival analysis,Gibbs sampling,Proportional hazard function,Weibull regression model,Addpative rejectionsampling
    Date: 1995
    Issue Date: 2014-07-28 11:40:50 (UTC+8)
    Abstract: 本研究在討論當觀察對象間具有異質性或脆弱性(Frailty)時,如何進行貝氏存活分析。為了加入脆弱因子於模式中,我們假定脆弱變數(z)對危險函數(Hazard function)具有相乘的效果,亦即h(t.lgvert.z,X)=z?h/sub 1/(t.lgvert.x)。我們所討論的問題為h/sub 1/(t.lgvert.x)是Weibull迴歸模式的危險函數,而脆弱變數服從Inverse Gaussian,Gamma,或Log-Normal分配。為進行貝氏分析,由於模式中各參數的邊際事後分配之精確形式未知,我們建議採用Clayton(1991)提出之Gibbs抽樣法及緩衝隨機替代法(Buffered stochastic substitution)的混合程序以產生各參數及脆弱性變數之抽樣值。此外,當條件事後密度函數的精確形式為未知時,我們以Gilks等人於1992及1994發展出的適應拒絕抽樣法(Adaptive rejection sampling)與適應拒絕Metropolis抽樣法(Adaptive rejection Metropolis sampling)產生參數之樣本,因而可估計邊際事後機率密度函數,事後動差,及預估的(Predictive)存活機率,並可推論脆弱性是否存在。
    In this study we consider to perform Bayesian survival analysis with heterogeneity or frailty among subjects. To model fraitlies, it is assumed that the effect of the frailty variable, z, to the hazard function is multiplicative, i.e. h(t.lgvert.z,x)=zh/sub 1/(t.lgvert.x). We assume that h/sub 1/(t.lgvert.x) is the hazard function for Weibull regression model, and frailties follow in-verse Gaussian, Gamma, or log-Normal distribution. To conduct Bayesian analysis, since the exact form of the marginal posterior distribution of each parameter does not exist, we suggest to employ a mixture of Gibbs sampling and buffered stochastic substitution proposed by Clayton (1991) to perform Bayesian computation. To sample from conditional posterior densities, we take either adaptive rejection sampling (Gilks and Wild, 1992) or adaptive rejection Metropolis sampling (Gilks, et al, 1994) method, if their exact forms do not exist. Thus, estimates for marginal posterior densities, posterior expections, posterior variances, and predictive survival probabilities can be derived. Also, the Bayesian inference about whether frailties exist or not can be made.
    Relation: 行政院國家科學委員會
    計畫編號 NSC84-2415-H004-006
    Data Type: report
    Appears in Collections:[統計學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2873View/Open
    index.html微片館藏查詢0KbHTML21113View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback